[1] Namias V. The fractional order fourier transform and its application to quantum mechanics[J]. Geoderma, 2012, 25(3):236-242.
[2] Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their optical implementation:I[J]. Journal of the Optical Society of America A optics & Image Science, 1993, 10(9):1875-1881.
[3] Sahin A, Ozaktas H M, Mendlovic D. Fractional Fourier transforms and their optical implementation. Ⅱ[J]. Journal of the Optical Society of America A optics & Image Science, 1993, 10(12):2522-2531.
[4] Lohmann A W. Image rotation, Wigner rotation, and the fractional fourier transform[J]. Journal of the Optical Society of America A, 1993, 10(10):2181-2186.
[5] Almeida L B. The fractional Fourier transform and time-frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11):3084-3091.
[6] Lang J, Tao R, Ran Q W, et al. Short-time fractional Fourier transform and its applications[J]. IEEE Transactions on Signal Processing, 2010, 58(5):2568-2580.
[7] Shi J, Zhang N T, Liu X P. A novel fractional wavelet transforms and its applications[J]. Science China Information Sciences, 2012, 55(6):1270-1279.
[8] 董永强, 陶然, 周思永, 等. 含未知参数的多分量Chirp信号的分数阶傅里叶分析[J]. 北京理工大学学报, 1999, 19(5):612-616. Dong Yongqiang, Tao Ran, Zhou Siyong, et al. The fractional fourier analysis of multicomponent chirp signals with unknown parameters[J]. Journal of Beijing Institute of Technology, 1999, 19(5):612-616.
[9] Lin Q, Ran T, Zhou S, et al. Detection and parameter estimation of multicomponent LFM signal based on the fractional fourier transform[J]. Science in China, 2004, 47(2):184-198.
[10] Akay O, Boudreaux-Bartels G F. Fractional convolution and correlation via operator methods and an application to detection of linear FM signals[J]. IEEE Transactions on Signal Processing, 2001, 49(5):979-993.
[11] 邓兵, 陶然, 齐林, 等. 分数阶Fourier变换与时频滤波[J]. 系统工程与电子技术, 2004, 26(10):1357-1359. Deng Bin, Tao Ran, Qi Lin, et al. Fractional Fourier transform and time-frequency filtering[J]. Systems Engineering and Electronics, 2004, 26(10):1357-1359.[12 Erden M F, Kutay M A, Ozaktas H M. Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration[J]. IEEE Transactions on Signal Processing, 1999, 47(5):1458-1462.
[13] Djurovic I, Stankovic S, Pitas I. Digital watermarking in the fractional Fourier transformation domain[J]. Journal of Network & Computer Applications, 2001, 24(2):167-173.
[14] Shin S G, Jin S I, Shin S Y, et al. Optical neural network using fractional Fourier transform, log-likelihood, and parallelism[J]. Optics Communications,1998, 153:218-222.
[15] Barshan B, Ayrulu B. Fractional Fourier transform pre-processing for neural networks and its application to object recognition[J]. Neural Networks, 2002, 15(1):131-140.
[16] Samil Yetik I, Nehorai A. Beamforming using the fractional Fourier transform[J]. Signal Processing IEEE Transactions on, 2003, 51(6):1663-1668.
[17] 陶然, 周云松. 基于分数阶傅里叶变换的宽带LFM信号波达方向估计新算法[J]. 北京理工大学学报, 2005, 25(10):895-899. Tao Ran, Zhou Yunsong. A novel method for the direction of arrival estimation ofwideband linear frequency modulated sources basedon fractional Fourier transform[J]. Transactions of Beijing Institute of Technology, 2005, 25(10):895-899.
[18] 陈恩庆, 陶然, 张卫强. 一种基于分数阶傅立叶变换的时变信道参数估计方法[J]. 电子学报, 2006, 33(12):2101-2104. Chen Enqing, Tao Ran, Zhang Weiqiang. A method for time-varying channel parameter estimationbased on fractional Fourier transform[J]. Acta Electronica Sinica, 2006, 33(12):2101-2104.
[19] Martone M. A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels[J]. IEEE Transactions on Communications, 2001, 49(6):1011-1020.
[20] 殷敬伟, 惠俊英, 蔡平, 等. 基于分数阶Fourier变换的水声信道参数估计[J]. 系统工程与电子技术, 2007, 29(10):1624-1627. Ying Jingwei, Hui Junying, Cai Pin, et al. Underwater acoustic channel parameter estimationbased on fractional Fourier transforms[J]. Systems Engineering and Electronics, 2007, 29(10):1624-1627.
[21] Cheng H, Li W, Fan Y, et al. A novel fiber nonlinearity suppression method in DWDM optical fiber transmission systems with an all-optical predistortion module[J]. Optics Communications, 2013, 290(290):152-157.
[22] Han Q, Li W, Yang M. An optical waveform pre-distortion method based on time domain fractional Fourier transformation[J]. Optics Communications, 2011, 284(2):660-664.
[23] Zhou H, Li B, Tang M, et al. A fast and robust blind chromatic dispersion estimation based on fractional fourier transformation[C]//European Conference on Optical Communication, 2015. Valencia:IEEE, 2015:1-3.
[24] 杨爱英, 陈晓宇. 分数阶傅里叶变换测量光纤链路色散的方法:201410752087.8[P]. 2015-03-25. Yang Aiying, Chen Xiaoyu. A method based on fractional Fourier transformation for measuring chromatic along a fiber link:201410752087.8[P]. 2015-03-25.
[25] Deng L, Cheng M, Wang X, et al. Secure OFDM-PON system based on chaos and fractional Fourier transform techniques[J]. Journal of Lightwave Technology, 2014, 32(15):2629-2635.
[26] Zhou H, Wu J, Tang M, et al. Joint timing and frequency synchronization based on FrFT encoded training symbol for coherent optical OFDM systems[C]. Optical Fiber Communication Conference (OFC) 2016, Anaheim, California, March 20-22, 2016.
[27] Gabriella C. What else can an AWG do?[J]. Optics Express, 2012, 20(26):1-3.
[28] Curzon G, Kantamaneni B D, Winch J, et al. Optical OFDM based on the fractional Fourier transform[C]//International Conference on Transparent Optical Networks. Coventry:IEEE, 2012:1-4.
[29] Nagashima T, Cincotti G, Murakawa T, et al. PAPR management of all-optical OFDM signal using fractional fourier transform for fibre nonlinearity mitigation[C]//Optical Communication (ECOC), 2015 European Conference on. Valencia:IEEE, 2015. Doi:10.1109/ECOC.2015.7341785.
[30] Konishi T, Murakawa T, Nagashima T, et al. Flexible OFDM-based access systems with intrinsic function of chromatic dispersion compensation[J]. Optical Fiber Technology, 2015, 26:94-99.