Special Issues

Single-longitudinal-mode thulium-doped fiber laser using Fabry-Perot filter and saturable absorber

  • BAI Yan ,
  • YAN Fengping ,
  • SUN Jinghui ,
  • YIN Zhi
Expand
  • 1. Key Lab of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Beijing 100044, China;
    2. Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China

Received date: 2016-06-30

  Revised date: 2016-07-11

  Online published: 2016-09-21

Abstract

A single-longitudinal-mode thulium-doped fiber laser using Fabry-Perot (F-P) filter and saturable absorber is proposed and experimentally demonstrated at the 2 μm band. In the structure, the combination of a narrowband F-P filter and a section of unpumped thulium-doped fiber ensures the single-longitudinal-mode lasing operation. A stable lasing operation is obtained at room temperature, with the central wavelength of 1941.6 nm and the optical signal-to-noise ratio of 32 dB. For an experimental period of 100 min, the output power fluctuates less than 1.5 dB and the center wavelength shifts less than 0.04 nm, indicating that the single-longitudinal-mode thuliumdoped fiber laser possesses good long-term stability.

Cite this article

BAI Yan , YAN Fengping , SUN Jinghui , YIN Zhi . Single-longitudinal-mode thulium-doped fiber laser using Fabry-Perot filter and saturable absorber[J]. Science & Technology Review, 2016 , 34(16) : 104 -107 . DOI: 10.3981/j.issn.1000-7857.2016.16.012

References

[1] Young R J, Barnes N P. Profiling atmospheric water vapor using a fiber laser lidar system[J]. Applied Optics, 2010, 49(4):562-567.
[2] Koch G J, Beyon J Y, Petzar P, et al. Field testing of a high-energy 2μm Doppler lidar[J]. Journal of Applied Remote Sensing, 2010, 4(1):043512-043512-13.
[3] Koch G J, Beyon J Y, Cowen L J, et al. Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar[J]. Journal of Applied Remote Sensing, 2014, 8(1):083662-083662.
[4] Andreev S N, Mironchuk E S, Nikolaev I V, et al. High precision measurements of the 13CO2/12CO2 isotope ratio at atmospheric pressure in human breath using a 2μm diode laser[J]. Applied Physics B, 2011, 104(1):73-79.
[5] Pal A, Sen R, Bremer K, et al. "All-fiber" tunable laser in the 2μm region, designed for CO2 detection[J]. Applied Optics, 2012, 51(29):7011-7015.
[6] Massaki N, Eimpunth S, Fabi S G, et al. Treatment of melasma with the 1927 nm fractional thulium fiber laser:A retrospective analysis of 20 cases with long-term follow-up[J]. Lasers in Surgery and Medicine, 2013, 45(2):95-101.
[7] Fried N M, Murray K E. High-power thulium fiber laser ablation of urinary tissues at 1.94μm[J]. Journal of Endourology, 2005, 19(1):25-31.
[8] Somunyudan M F, Topaloglu N, Ergenoglu M Ü, et al. Endovenous laser ablation (EVLA) with Tm-fiber laser[C]//Biomedical Engineering Meeting (BIYOMUT), 201015th National. Antalya, Turkey:IEEE, 2010:1-3.
[9] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber Laser[J]. Optics letters, 2004, 29(13):1503-1505.
[10] Gapontsev D, Platonov N, Meleshkevich M, et al. 20W single-frequency fiber laser operating at 1.93μm[C]//Lasers and Electro-Optics, 2007. Washington, USA:Optical Society of America, 2007:1-2.
[11] Zhang Y J, Yao B Q, Ju Y L, et al. LD-cladding-pumped 50 pm linewidth Tm3+-doped silica fiber laser[J]. Optics Express, 2008, 16(11):7715-7719.
[12] Zhang Z, Boyland A J, Sahu J K, et al. High-power single-frequency thulium-doped fiber DBR laser at 1943 nm[J]. Photonics Technology Letters, IEEE, 2011, 23(7):417-419.
[13] He X, Xu S, Li C, et al. 1.95μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber[J]. Optics Express, 2013, 21(18):20800-20805.
Outlines

/