Special Issues

Key technologies of time and wavelength division multiplexing passive optical network

  • HU Weisheng ,
  • YI Lilin ,
  • HE Hao ,
  • LI Zhengxuan ,
  • LI Jun ,
  • BI Meihua
Expand
  • State Key Lab of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2016-06-30

  Revised date: 2016-07-20

  Online published: 2016-09-21

Abstract

To meet the fast-growing bandwidth requirement of end users, a time and wavelength division multiplexing technique is proposed to extend the network capacity. Meanwhile, the data rate of each wavelength should also be increased. In this paper, the feasibility of using DML in TWDM-PON systems is investigated, with an emphasis on chirp management and power budget improving techniques. Besides, the Raman crosstalks between the new-added and the traditional channels are analyzed with a proposed crosstalk mitigation solution based on Dicode coding.

Cite this article

HU Weisheng , YI Lilin , HE Hao , LI Zhengxuan , LI Jun , BI Meihua . Key technologies of time and wavelength division multiplexing passive optical network[J]. Science & Technology Review, 2016 , 34(16) : 69 -75 . DOI: 10.3981/j.issn.1000-7857.2016.16.007

References

[1] Telecommunication Standardization Sector of ITU. 40-Gigabit-capable passive optical networks (NG-PON2):General requirements:ITU-T G.989.1[S/OL]. Geneva, Switzerland:ITU, 2013[2016-06-29]. http://www.itu.int/rec/T-REC-G.989.1-201303-I.
[2] Telecommunication Standardization Sector of ITU. 40-Gigabit-capable passive optical networks 2(NG-PON2):Physical media dependent (PMD) layer specification:G.989.2[S/OL]. Geneva, Switzerland:ITU, 2014[2016-06-30]. http://www.itu.int/rec/T-REC-G.989.2/en.
[3] Mahgerefteh D, Matsui Y, Zheng X Y, et al. Chirp managed laser and applications[J]. IEEE Journal of Selected Topics in Quantum Electron-ics, 2010, 16(5):1126-1139.
[4] Yi Lilin, Li Zhengxuan, Hu Weisheng, et al. First demonstration of sym-metric 40 Gb/s TWDM-PON with 100 km passive reach and 1024-split using direct modulation and direct detection[C]//Asia Communica-tions and Photonics Conference and Exhibition (ACP2013). Beijing, China:Optical Society of America, 2013:PDP AF2C.3.
[5] Bi Meihua, Xiao Shilin, He Hao, et al. Simultaneous DPSK demodula-tion and chirp management using delerferometer in symmetric 40 Gb/s capability TWDM-PON system[J]. Optics Express, 2013, 21(14):16528-16535.
[6] Li Zhengxuan, Yi Lilin, Hu Weisheng, Comparison of downstream trans-mitters for high loss budget of long-reach 10G-PON[C]//Optical Fiber Communication Conference and Exhibition. San Francisco, USA:Opti-cal Society of America, 2014:Tu2C.4.
[7] Bi Meihua, Xiao Shilin, Yi Lilin, et al. Power budget improvement lowcost symmetric 40 Gb/s DML-based TWDM-PON[J]. Optics Express, 2014, 22(6):6925-6933.
[8] Li Zhengxuan, Yi Lilin, Wei Wei, et al. Symmetric 40 Gb/s, 100 km passive reach TWDM-PON with 53-dB loss budget[J]. Journal of Light-wave Technology, 2014, 32(21):3389-3396.
[9] Lavery D, Torrengo E, Savory S. Bidirectional 10 Gbit/s long-reach WDM-PON using digital coherent receivers[C]//Optical Fiber Communi-cation Conference. Los Angeles, California:Optical Society of America, 2011:OTuB4.
[10] Qian D, Mateo E, Huang M F. A 105 km reach fully passive 10GPON using a novel digital OLT[C]//European Conference and Exhibi-tion on Optical Communication. Amsterdam, Netherlands:Optical Soci-ety of America, 2012:Tu.1.B.2.
[11] Van Veen D T, Houtsma V E, GnauckA H, et al. Demonstration of 40 Gb/s TDM-PON Over 42 km with 31 dB optical power budget using an APD-based receiver[J]. Journal of Lightwave Technology, 2014, 33(8):1675-1680.
[12] Ye Zhicheng, Li Shengping, Cheng Ning, et al. Demonstration of highperformance cost-effective 100 Gb/s TWDM-PON using 4×25 Gb/s optical duobinary channels with 16 GHz APD and receiver-side postequalization[C]//European Conference and Exhibition on Optical Com-munications. Valencia, Spain:IEEE, 2015:1-3.
[13] Wei J L, Eiselt N, Griesser H, et al. First demonstration of real-time end-to-end 40 Gb/s PAM-4 system using 10 G transmitter for next generation access applications[C]//European Conference and Exhibi-tion on Optical Communications. Valencia, Spain:IEEE, 2015:32-33. DOI:10.1109/ECOC.2015.7341692.
[14] Li Zhengxuan, Yi Lilin, Wang Xiaodong, et al. 28 Gb/s duobinary sig-nal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON[J]. Optics Express, 2015, 23(16):20249-20256.
[15] CPRI. Common public radio interface(CPRI); interface specification version 7.0[S/OL]. (2015-10-09)[2016-06-30]. http://www.cpri.info/downloads/.
[16] Li Jun, He Hao, Hu Weisheng. Theoretical and experimental analysis of interchannel crosstalk between TWDM and fronthaul wavelengths due to stimulated Raman scattering[J]. Optics Express, 2015, 23(7):8809-8817.
[17] Cheng N, Zhou M, Effenberger F J. 10 Gbit/s delay modulation using a directly modulated DFB laser for a TWDM PON with converged ser-vices[Invited] [J]. Journal of Optical Communications and Networking, 2015, 7(1):A87-A96.
[18] Tanaka A, Cvijetic N, Wang T. Beyond 5 dB nonlinear Raman cross-talk reduction via PSD control of 10 Gb/s OOK in RF-video coexis-tence scenarios for next-generation PON[C]//Optical Fiber Communica-tion Conference. San Francisco, USA:Optical Society of America, 2014:M3I.3.
[19] Li Jun, Bi Meihua, He Hao, et al. Suppression of SRS induced cross-talk in RF-video overlay TWDM-PON system using dicodecoding[J]. Optics Express, 2014, 22(18):21192-21198.
Outlines

/