Special Issues

Key technologies and recent progress of broadband access networks

  • ZHANG Chongfu ,
  • CHEN Chen ,
  • ZHANG Wei ,
  • QIU Kun ,
  • YUAN Weicheng ,
  • YAN Yangyang
Expand
  • 1. Key Lab of Optical Fiber Sensing and Communication Networks, Ministry of Education;School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
    2. School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore

Received date: 2016-06-30

  Revised date: 2016-07-15

  Online published: 2016-09-21

Abstract

Broadband communication networks include both high-speed optical fiber transmission backbone networks and broadband access networks (BAN), but developments of the two kinds of networks are very uneven. Particularly, several challenges of BAN such as speed and bandwidth, security and privacy, cost-effectiveness, energy consumption and integration need to be addressed. In this paper, according to the international research reports, a brief overview of the research progress of BAN is presented, and the trend in technology development and key issues of BAN are indicated. At last, the security and privacy enhancement, the cost reduction, the integration and compatibility improvement of BAN are summarized and discussed.

Cite this article

ZHANG Chongfu , CHEN Chen , ZHANG Wei , QIU Kun , YUAN Weicheng , YAN Yangyang . Key technologies and recent progress of broadband access networks[J]. Science & Technology Review, 2016 , 34(16) : 34 -44 . DOI: 10.3981/j.issn.1000-7857.2016.16.003

References

[1] Nesset D. NG-PON2 technology and standards[J]. Journal of Lightwave Technology, 2015, 33(5):1136-1143.
[2] Cvijetic N, Cvijetic M, Huang M F, et al. Terabit optical access net-works based on WDM-OFDMA-PON[J]. Journal of Lightwave Technolo-gy, 2012, 30(4):493-503.
[3] Morosi J, Hoxha J, Martelli P, et al. 25 Gbit/s per user coherent all-op-tical OFDM for Tbit/s-capable PONs[J]. Journal of Optical Communica-tions and Networking, 2016, 8(4):190-195.
[4] Horvath T, Malina L, Munster P. On security in Gigabit passive optical networks[C]//International Workshop on Fiber Optics in Access Net-work (FOAN). Brno:IEEE, 2015:51-55.
[5] Zhang L J, Xin X J, Liu B, et al. Physical-enhanced secure strategy in an OFDM-PON[J]. Optics Express, 2012, 20(3):2255-2265.
[6] Wang Q K, Tse K H, Chen L K, et al. Physical-layer network coding for VPN in TDM-PON[J]. IEEE Photonics Technology Letters, 2012, 24(23):2166-2168.
[7] Zhang Q Y, Zhang C F, Jin W, et al. Enabled scalable and privacy WDM-RoF system based on optical virtual private networks[J]. Optical Engineering, 2014, 53(6):066105.
[8] Chow C W, Yeh C H, Wang C H, et al. Demonstration of signal remod-ulation long reach carrier distributed passive optical network using OFDM-QAM signal[C]//35th European Conference on Optical Communi-cation. Vienna, Austria:VDE VERLAG, 2009:Paper 8.5.2.
[9] Zhang C F, Xiao N W, Chen C, et al. Energy-efficient orthogonal fre-quency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation[J]. Opti-cal Engineering, 2016, 55(2):026108-026108.
[10] Wei J L, Hugues-Salas E, Giddings R P, et al. Wavelength reused bi-directional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators[J]. Optics Express, 2010, 18(10):9791-9808.
[11] Giddings R P, Hugues-Salas E, Jin X Q, et al. Colourless real-time optical OFDM end-to-end transmission at 7.5 Gb/s over 25 km SSMF using 1 GHz RSOAs for WDM-PONs[C]//Optical Fiber Communica-tion Conference (OFC), San Diego, CA:OSA, 2010:OMS4.
[12] Hugues-Salas E, Giddings R P, Jin X Q, et al. REAM intensity modu-lator-enabled 10 Gb/s colorless upstream transmission of real-time op-tical OFDM signals in a single-fiber-based bidirectional PON archi-tecture[J]. Optics Express, 2012, 20(19):21089-21100.
[13] Liu B, Xin X J, Zhang L J, et al. Performance investigation and dem-onstration of colorless upstream transmission in ECDM-OFDM-PON[J]. Optics Express, 2011, 19(15):14542-14548.
[14] Ruffini M. Metro-access network convergence[C]//Optical Fiber Com-munication Conference (OFC), Anaheim, CA, USA:OSA, 2016:Th4B.1.
[15] Sauer M, Kobyakov A, George J. Radio over fiber for picocellular net-work architectures[J]. Journal of Lightwave Technology, 2007, 25(11):3301-3320.
[16] Yeh C, Chow C, Wu Y, et al. Performance of long-reach passive ac-cess networks using injection-locked Fabry-Perot laser diodes with fi-nite front-facet reflectivities[J]. Journal of Lightwave Technology, 2013, 31(12):1929-1934.
[17] Xiang Y, Chen C, Zhang C F, et al. Wired wireless access integrated RoF-PON with scalable generation of multi-frequency MMWs en-abled by polarization multiplexed FWM in SOA[J]. Optics Express, 2013, 21(1):1218-1225.
[18] Shaneman K, Gray S. Optical network security:Technical analysis of fiber tapping mechanisms and methods for detection & prevention[C]//Military Communications Conference (MILCOM). Monterey, California, USA:IEEE, 2004:711-716.
[19] Fok M P, Wang Z, Deng Y, et al. Optical layer security in fiber-optic networks[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3):725-736.
[20] Wu B B, Narimanov E. A method for secure communications over a public fiber-optical network[J]. Optics Express, 2006, 14(9):3738-3751.
[21] Mendonca C, Lima M, Teixeira A. Security issues due to reflection in PON physical medium[C]//14th International Conference on Transpar-ent Optical Networks (ICTON). Coventry, England:IEEE, 2012,1-4.
[22] Telecommunication Standardization Sector of ITU. ITU-T G.983 BPON[S]. Geneva, Switzerland:ITU, 2005. Telecommunication Standard-ization Sector of ITU. ITU-T G.984 G-PON[S]. Geneva, Switzerland:ITU, 2004.
[23] IEEE 802.3 Ethernet Working Group. IEEE P802.3ah ethernet in the first mile[S/OL]. (2004-09-10)[2016-8-16]. http://www.ieee802.org/3/.
[24] Wang Z, Fok M P, Prucnal P R. Physical encoding in optical layer se-curity[J]. Journal of Cyber Security and Mobility, 2012, 83(100):83-100.
[25] Cincotti G, Wada N, Kitayama K. Secure optical bit-and block-cipher transmission using a single multiport encoder/decoder[C]//Optical Fi-ber Communication Conference (OFC). San Diego, CA, USA:OSA, 2008, 277-279.
[26] Thomas S, Wagner D. Insecurity in ATM-based passive optical net-works[C]//IEEE International Conference on Communications. New York:IEEE, 2002:2803-2805.
[27] Effenberger F, Clearly D, Haran O, et al. An introduction to PON tech-nologies[Topics in Optical Communications] [J]. IEEE Communications Magazine, 2007, 45(3):S17-S25.
[28] Callaway E, Gorday P, Hester L, et al. Home networking with IEEE 802.15.4:A developing standard for low-rate wireless personal area networks[J]. IEEE Communications magazine, 2002, 40(8):70-77.
[29] Kazovsky L G, Wong S W, Gudla V, et al. Challenges in next-genera-tion optical access networks:Addressing reach extension and security weaknesses[J]. IET Optoelectronics, 2011, 5(4):133-143.
[30] Teixeira A, Vieira A, Andrade J, et al. Security issues in optical net-works physical layer[C]//Transparent Optical Networks (ICTON). Ath-ens, Greece:IEEE, 2008:123-126.
[31] Prucnal P R, Fok M P, Deng Y, et al. Physical layer security in fiberoptic networks using optical signal processing[C]//Communications and Photonics Conference and Exhibition (ACP). Shanghai:SPIE, 2009:1-10.
[32] Zhang C F, Qiu K. Experimental demonstration and analysis of securi-ty-improved optical code division multiple access networks using mul-tiple-group optical orthogonal codes[J]. Optical Engineering, 2010, 48(10):105005-105005.
[33] Seleem H, Bentrcia A, Fathallah H. A projected parallel interference cancellation for asynchronous upstream OCDMA-PON[J]. IEEE Com-munications Letters, 2012, 16(11):1721-1724.
[34] Romero-Zurita N, McLernon D, Ghogho M, et al. PHY layer security based on protected zone and artificial noise[J]. IEEE Signal Processing Letters, 2013, 20(5):487-490.
[35] Cincotti G, Sacchieri V, Manzacca G, et al. Physical layer security:All-optical cryptography in access networks[C]//International Confer-ence on Transparent Optical Networks (ICTON). Athens, Grefce:IEEE, 2008:127-130.
[36] Hong X, Wang D, Xu L, et al. Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering[J]. Optics Express, 2010, 18(12):12415-12420.
[37] Zhang C F, Chen C, Zhang W, et al. Inter-BSs virtual private network for privacy and security enhanced 60 GHz radio-over-fiber system[J]. Optical Fiber Technology, 2013, 19(3):236-241.
[38] Jin W, Zhang C F, Chen C, et al. Scalable and reconfigurable all-opti-cal VPN for OFDM-based metro-access integrated network[J]. Journal of Lightwave Technology, 2014, 32(2):318-325.
[39] Wang Q, Tse K H, Chen L K, et al. Physical-layer network coding for VPN in TDM-PON[J]. IEEE Photonics Technology Letters, 2012, 24(23):2166-2168.
[40] Su Y K, Tian Y, Wong E, et al. All-optical virtual private network in passive optical networks[J]. Laser & Photonics Reviews, 2008, 2(6):460-479.
[41] Zhang C F, Huang J, Chen C, et al. All-optical virtual private net-work and ONUS communication in optical OFDM-based PON system[J]. Optics Express, 2011, 19(24):24816-24821.
[42] Argyris A, Syvridis D, Larger L, et al. Chaos-based communication at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066):343-344.
[43] Jiang N, Zhang C F, Qiu K. Secure passive optical network based on chaos synchronization[J]. Optics Letters, 2012, 37(21):4501-4503.
[44] Jiang N, Liu D, Zhang C F, et al. Modeling and simulation of chaosbased security-enhanced WDM-PON[J]. IEEE Photonics Technology Letters, 2013, 25(19):1912-1915.
[45] Larger L, Pesquera L, Nguimdo R M, et al. Digital key for chaos com-munication performing time delay concealment[J]. Physical Review Let-ters, 2011, 107(3):034103.
[46] Cheng M, Deng L, Gao X, et al. Security enhanced OFDM-PON using hybrid chaotic system[J]. IEEE Photonics Technology Letters, 2015, 27(3):326-329.
[47] Alvarez G, Li S. Some basic cryptographic requirements for chaosbased cryptosystems[J]. International Journal of Bifurcation and Chaos, 2006, 16(8):2129-2151.
[48] Zhang L, Xin X, Liu B, et al. Secure OFDM-PON based on chaos scrambling[J]. IEEE Photonics Technology Letters, 2011, 23(14):998-1000.
[49] Zhang W, Zhang C F, Chen C, et al. Joint PAPR reduction and physi-cal layer security enhancement in OFDMA-PON[J]. IEEE Photonics Technology Letters, 2016, 28(9):998-1001.
[50] Zhang L J, Liu B, Xin X J, et al. Theory and performance analyses in secure CO-OFDM transmission system based on two-dimensional per-mutation[J]. Journal of Lightwave Technology, 2013, 31(1):74-80.
[51] Jin W, Zhang C F, Zhang W, et al. Physically secured orthogonal fre-quency division multiplexing-passive optical network employing noisebased encryption and signal recovery process[J]. Optical Engineering, 2016, 55(2):026103.
[52] Zhang L J, Liu B, Xin X J. Secure optical generalized filter bank multi-carrier system based on cubic constellation masked method[J]. Optics Letters, 2015, 40(12):2711-2714.
[53] Zhang L J, Liu B, Xin X J. Secure coherent optical multi-carrier sys-tem with four-dimensional modulation space and Stokes vector scram-bling[J]. Optics Letters, 2015, 40(12):2858-2861.
[54] Deng L, Cheng M, Wang X, et al. Secure OFDM-PON system based on chaos and fractional fourier transform techniques[J]. Journal of Lightwave Technology, 2014, 32(15):2629-2635.
[55] Cheng M, Deng L, Wang X, et al. Enhanced secure strategy for OFDM-PON system by using hyperchaotic system and fractional fouri-er transformation[J]. IEEE Photonics Journal, 2014, 6(6):1-9.
[56] Zhang W, Zhang C F, Jin W, et al. Chaos coding-based QAM IQ-en-cryption for improved security in OFDMA-PON[J]. IEEE Photonics Technology Letters, 2014, 26(19):1964-1967.
[57] Hu X, Yang X, Shen Z, et al. Chaos-based partial transmit sequence technique for physical layer security in OFDM-PON[J]. IEEE Photon-ics Technology Letters, 2015, 27(23):2429-2432.
[58] Korzh B, Lim C C W, Houlmann R, et al. Provably secure and practi-cal quantum key distribution over 307 km of optical fibre[J]. Nature Photonics, 2015, 9(3):163-168.
[59] Choi I, Young R J, Townsend P D. Quantum key distribution on a 10 Gb/s WDM-PON[J]. Optics Express, 2010, 18(6):9600-9612.
[60] Chen C, Zhang C F, Liu D M, et al. Tunable optical frequency comb enabled scalable and cost-effective multiuser orthogonal frequency-di-vision multiple access passive optical network with source-free optical network units[J]. Optics Letters, 2012, 37(19):3954-3956.
[61] Zhang C F, Chen C, Feng Y, et al. Experimental demonstration of nov-el source-free ONUS in the bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing[J]. Optics Express, 2012, 211(6):6230-6235.
[62] Chen C, Zhang C F, Feng Y, et al. Bidirectional radio frequency upconverted orthogonal frequency division multiple access passive opti-cal network with novel source-free optical network units using fourwave mixing in semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 2012, 24(24):2206-2209.
[63] Zhang C F, Feng Y, Chen C, et al. Full-duplex radio-over-fiber sys-tem with novel source-free base station using polarization multiplexing[J]. Laser Physics Letters, 2012, 9(11):814-818.
[64] Chen C, Zhang C F, Zhang W, et al. Hybrid WDM-OFDMA-PON util-ising tunable generation of flat optical comb[J]. Electronics Letters, 2013, 49(4):276-277.
[65] Zhang C F, Zhang Q Y, Wang Y, et al. Proposal for 60 GHz wireless transceiver for the radio over fiber system[J]. Optics and Laser Tech-nology, 2014, 56(2):146-150.
[66] Liu S, Shen G S, Tian H P. A 60-GHz RoF system employing vari-able step size LMS equalizer with fast convergence speed[C]//Optical Fiber Communication Conference (OFC). Anaheim, CA, USA:OSA, 2016:Th2A.18.
[67] Zhang C F, Chen C, Qiu K. Hybrid bidirectional radio-over-fiberbased orthogonal frequency division multiple access-passive optical network supporting 60/120 GHz using offset quadrate phase shift key-ing[J]. Optical Engineering, 2015, 54(9):096108.
[68] Carpintero G, Guzman R C, Gordon C, et al. Photonic-enabled milli-meter-wave F-band wireless link using photonic integrated circuits[C]//European Conference on Networks and Optical Communications (ECNOC). London:IEEE, 2015, 1-4.
[69] Liu W L, Li M, Guzzon R S, et al. A fully reconfigurable photonic inte-grated signal processor[J]. Nature Photonics, 2016, 10(3):190-196.
[70] Seeds A J, Shams H, Fice M J, et al. TeraHertz photonics for Wireless communications[J]. Journal of Lightwave Technology, 2015, 33(3):579-587.
[71] Xiang Y, Jiang N, Chen C, et al. Wired/wireless access integrated RoF-PON with scalable generation of multi-frequency MMWs en-abled by tunable optical frequency comb[J]. Optics Express, 2013, 21(17):19762-19767.
[72] Zhang C F, Wang L Y, Qiu K. Proposal for all-optical generation of multiple-frequency millimeter-wave signals for RoF system with multi-ple base stations using FWM in SOA[J]. Optics Express, 2011, 19(15):13957-13962.
[73] Zhang Q Y, Zhang C F, Chen C, et al. Multi-service access radioover-fiber system with multiple base-station groups enabled by scal-able generation of multi-frequency MMWs[J]. Optics Communications, 2014, 324:120-126.
[74] Zhang C F, Chen C, Jin W, et al. Recent progress in broadband opti-cal access networks at UESTC[J]. Acta Photonica sinica, 2014, 43(Sup-pl 1):0106001.
[75] Alves T M F, Morant M, Cartaxo A V, et al. Transmission of OFDM wired-wireless quintuple-play services along WDM LR-PONs using centralized broadband impairment compensation[J]. Optics Express, 2012, 20(13):13748-13761.
[76] Rasztovits-Wiech M, Stadler A, Gianordoli S, et al. 10/2.5 Gbps dem-onstration in extra-large PON prototype[C]//European Conference and Exhibition of Optical Communication (ECOC). Berlin, Germany:VDE VERLAG, 2007:1-2.
[77] Zhang C F, Zhang Q L, Chen C, et al. Metro-access integrated net-work based on optical OFDMA with dynamic sub-carrier allocation and power distribution[J]. Optics Express, 2013, 21(2):2474-2479.
[78] Ziaie S, Muga N J, Guiomar F P, et al. Experimental assessment of the adaptive stokes space-based polarization demultiplexing for opti-cal metro and access networks[J]. Journal of Lightwave Technology, 2015, 33(23):4968-4974.
[79] Zhang C F, Jin W, Chen C, et al. Polarization multiplexed OFDM band interleaving enabled spectral efficient ROADM for metro-access integrated networks[J]. Optical Fiber Technology, 2014, 20(2):130-136.
[80] Jin W, Duan X, Dong Y X, et al. DSP-enabled flexible ROADMs with-out optical filters and O-E-O conversions[J]. Journal of Lightwave Technology, 2015, 33(19):4124-4131.
[81] Kuklinski F. Programmable management framework for evolved SDN[C]//2014 IEEE Network Operations and Management Symposium (NOMS). Krakow:IEEE, 2014, 1-8.
[82] Woesner H, Fritzsche D. SDN and OpenFlow for converged access/ag-gregation networks[C]//Optical Fiber Communication Conference (OFC). Anaheim, CA, USA:OSA, 2013:1-3.
[83] Cvijetic N, Tanaka A, Ji P N, et al. SDN and OpenFlow for dynamic flex-grid optical access and aggregation networks[J]. Journal of Light-wave Technology, 2014, 32(4):864-870.
[84] Valcarenghi L, Kondepu K, Sgambelluri A, et al. Experimenting the in-tegration of green optical access and metro networks based on SDN[C]//201517th International Conference on Transparent Optical Networks (ICTON). Budapest:IEEE, 2015:1-4.
[85] Ruffini M, Slyne F, Bluemm C, et al. Software defined networking for next generation converged metro-access networks[J]. Optical Fiber Technology, 2015, 26(A):31-41.
Outlines

/