Reviews

Preparation and progress of active carbon for canister

  • LI Xuankun ,
  • SI Zhichun ,
  • LIU Liping ,
  • WENG Duan ,
  • WU Xiaodong ,
  • RAN Rui ,
  • KANG Feiyu
Expand
  • 1. Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China;
    2. Key Laboratory of Advanced Materials of Ministry of Education;School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Received date: 2015-11-27

  Revised date: 2016-04-15

  Online published: 2016-06-13

Abstract

With the increasingly stringent exhaust emission standard and the mature application of exhaust treatment technics, fuel evaporation has become the main source of vehicle emission. Canister containing formed active carbon is the key part of automotive fuel evaporator to reduce emission and reuse fuel vapor significantly. Formed active carbon needs to have a large surface area and large effective pore volume (pore size of 2~5 nm) for high working capacity, high structural strength, fast adsorption and desorption of fuel, which are typically obtained by chemical and physical-chemical activation methods. Chemical and physical methods are common in preparation of activate carbon, chemical activation may produce pollution, which leads to environment problems, although to develop a preferable structure of pore, the physical activation costs a large amount of energy and investment, and the pore structure by this method is relatively poor. Chemi-physical methods can combine the benefits of both physical and chemical activations to decrease the pollution and produce high quality activate carbon. Activation and formation are the main processes for preparation of formed activate carbon; the precursor can change into activate carbon through the activation, and then have the solid shape and structural strength after formation. The integration of formation and activation is the development trend of preparation of formed activated carbon. The performance, characterization, preparation and related mechanisms, and the application in VOCs removal of formed active carbon are reviewed.

Cite this article

LI Xuankun , SI Zhichun , LIU Liping , WENG Duan , WU Xiaodong , RAN Rui , KANG Feiyu . Preparation and progress of active carbon for canister[J]. Science & Technology Review, 2016 , 34(9) : 86 -95 . DOI: 10.3981/j.issn.1000-7857.2016.09.011

References

[1] 刘勇峰, 吴明, 吕露. 油气回收技术发展现状及趋势[J]. 现代化工, 2001, 31(3):21-23. Liu Yongfeng, Wu Ming, Lü Lu. Development status and trend of VOCs recovery technology[J]. Morden Chemical Industry, 2001, 31(3):21-23.
[2] 刘静, 李自立, 孙云峰, 等. 国内外油气回收技术的研究发展[J]. 油气储运, 2010, 29(10):726-729. Liu Jing, Li Zili, Sun Yunfeng, et al. Development status of oil-gas recovery technology[J]. Oil & Gas Storage and Transportation, 2010, 29(10):726-729.
[3] Wang G S, Lee J W, Moon H. Performance evaluation of carbon adsorbents for automobile canisters[J]. Korean Journal of Chemical Engineering, 1998, 15(15):297-303.
[4] 郭昊. 活性炭吸附回收VOCs的过程研究与工程设计[D]. 北京:中国林业科学研究院, 2014. Guo Hao. Study on recovery process of volatile organic compounds by activated carbon adsorption and engineering design[D]. Beijing:Chinese Academy of Forestry, 2014.
[5] Fiani E, Perier-Cambry L, Thomas G. Non-isothermal modelling of hydrocarbon adsorption on a granulated active carbon[C]//Computer Supported Acitivity Coordination. Springer Berlin Heidelberg, 2006:3-12.
[6] Fuertes A B, Marbán G, Nevskaia D M. Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths[J]. Carbon, 2003, 41(1):87-96.
[7] 蒋剑春, 王志高, 邓先伦, 等. 丁烷吸附用颗粒活性炭的制备研究[J]. 林产化学与工业, 2005, 25(3):5-8. Jiang Jianchun, Wang Zhigao, Deng Xianlun, et al. Study on preparation of granular activated carbon for n-Butane adsorption[J]. Chemistry and Industry of Forest Products, 2005, 25(3):5-8.
[8] Tolles E D. Preparation for high activity high density carbon:US, US 5206207 A[P]. 1993.
[9] 李冰, 叶险峰. 油气回收活性炭评选研究[J]. 化学与黏合, 2012, 34(2):36-9. Li Bing, Ye Xianfeng. The selection study on the activated carbon adsorbent for recovery of oil vapor[J]. Chemistry and Adhension, 2012, 34(2):36-9.
[10] 陈进富, 艾春华. 轻烃在KL吸附剂上的吸附与脱附性能研究[J]. 石油与天然气化工, 1999, 2(2):95-7. Chen Jinfu, Ai Chunhua. Study on Adsorption and desorption performance of light hydrocarbon in KL adsorbant[J]. Chemical Engineering of Oil and Gas, 1999, 2(2):95-7.
[11] Tolles E D, Dimitri M S, Matthews C C. High activity, high density activated carbon:EP, EP 0557208 A1[P]. 1993.
[12] 李芥春. 碳氢化合物污染及其对策[M]. 北京:科学出版社, 1987:225-227. The Chemical Society of Japan. The pollution and solution of hydrocarbon[M]. Beijing:Science Press, 1987:225-227.
[13] Derbyshire F, Jagtoyen M, Andrews R, et al. Carbon materials in environmental applications[J]. Chemistry & Physics of Carbon, 2000, 27:1-66.
[14] Foster K L, Fuerman R G, Economy J, et al. Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers[J]. Chemistry of Materials, 1992, 4(5):1068-1073.
[15] Allen J L, Gatz J L, Eklund P C. Applications for activated carbons from used tires:butane working capacity[J]. Carbon, 1999, 37(9):1485-1489.
[16] Boki K, Tanada S, Tsutsui S, et al. Characterization of adsorption of nitrogen and n-butane in microporous activated carbon[J]. Journal of Colloid & Interface Science, 1987, 115(1):286-287.
[17] 司知蠢, 李旋坤, 翁端. 一种活性炭颗粒及其制备方法及碳罐:中国, 201510629711[P]. 2015. Si Zhichun, Li Xuankun, Weng Duan. The preparation of one kind of activated carbon and the canister:Chian, 201510629711[P]. 2015.
[18] Kosaka H, Hirota H, Iwashima Y. Chemically activated shaped carbon, process for producing same and use thereof:US, US 5039651 A[P]. 1991.
[19] 刘晓敏, 邓先伦, 郭昊, 等. 浸渍改性活性炭对正丁烷吸附性能的研究[J]. 可再生能源, 2013, 1(1):60-65. Liu Xiaomin, Deng Xianlun, Guo Hao, et al. The study on the adsorption performance of Butane by impregenated activated carbon[J]. Renewable Energy Resources, 2013, 1(1):60-65.
[20] Huang H, He Z, Yuan H, et al. Evaluation of n-Butane gas adsorption performance of composite adsorbents used for carbon canister[J]. Procedia Engineering, 2011, 18:78-85.
[21] Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994, 32(5):759-769.
[22] Qiao W, Korai Y, Mochida I, et al. Preparation of an activated carbon artifact:oxidative modification of coconut shell-based carbon to improve the strength[J]. Carbon, 2002, 40(3):351-358.
[23] 梅凡民, 傅成诚, 杨青莉, 等. 活性炭表面酸性含氧官能团对吸附甲醛的影响[J]. 环境污染与防治, 2010, 32(3):18-22. Mei Fanmin, Fu Chengcheng, Yang Qingli, et al. The effect of add functional groups of modified activated carbon formaldehyde absorption[J]. Environmental Pollution and Control, 2010, 32(3):18-22.
[24] 宋剑飞. 活性炭吸附VOCs及其构效关系研究[D]. 中南大学, 2014. Song Jianfei. Studies on the adsorption of VOCs by activated carbons and the structure-function relationship[D]. Centural South University, 2014.
[25] Villacañas F, Pereira M F R, Figueiredo J L. Adsorption of simple aromatic compounds on activated carbons.[J]. Journal of Colloid & Interface Science, 2006, 293(1):128-136.
[26] Marbán G, Fuertes A B. Co-adsorption of n-butane/water vapour mixtures on activated carbon fibre-based monoliths[J]. Carbon, 2004, 42(1):71-81.
[27] C arvalho A P, Cardoso B, Pires J, et al. Preparation of activated carbons from cork waste by chemical activation with KOH[J]. Carbon, 2003, 41(14):2873-2876.
[28] Hui D, Li G, Yang H, et al. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation[J]. Chemical Engineering Journal, 2010, 163(3):373-381.
[29] Njoku V O, Foo K Y, Asif M, et al. Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption[J]. Chemical Engineering Journal, 2014, 250(6):198-204.
[30] Wu F C, Wu P H, Tseng R L, et al. Preparation of novel activated carbons from H2SO4-Pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol[J]. Journal of Environmental Management, 2011, 92(3):708-713.
[31] Chen Y, Zhai S R, Liu N, et al. Dye removal of activated carbons prepared from NaOH-pretreated rice husks by low-temperature solution-processed carbonization and H3PO4 activation[J]. Bioresource Technology, 2013, 144(3):401-409.
[32] Jagtoyen M, Derbyshire F. Activated carbons from yellow poplar and white oak by H3PO4 activation[J]. Carbon, 1998, 36(7-8):1085-1097.
[33] Kılıç M, Apaydın-Varol E, Pütün A E. Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4[J]. Applied Surface Science, 2012, 261(5):247-254.
[34] Li K, Zheng Z, Ye L. Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4 activation[J]. Journal of Hazardous Materials, 2010, 181(s1-3):440-447.
[35] M.ALillo-Ródenas,DCazorla-Amorós,ALinares-Solano.Understanding chemical reactions between carbons and NaOH and KOH:An insight into the chemical activation mechanism[J]. Carbon, 2003, 41(2):267-275.
[36] Martin-Gullon I, Marco-Lozar J P, Cazorla-Amorós D, et al. Analysis of the microporosity shrinkage upon thermal post-treatment of H3PO4 activated carbons[J]. Carbon, 2004, 42(7):1339-1343.
[37] Mohanty K, Das D, Biswas M N. Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation[J]. Chemical Engineering Journal, 2005, 115(s1-2):121-131.
[38] Oliveira L C A, Pereira E, Guimaraes I R, et al. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents[J]. Journal of Hazardous Materials, 2009, 165(s1-3):87-94.
[39] Pereira R G, Veloso C M, Silva N M D, et al. Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCl2 as activating agents for BSA and α-lactalbumin adsorption[J]. Fuel Processing Technology, 2014, 126(126):476-486.
[40] Rios R B, Silva F W M, Torres A E B, et al. Adsorption of methane in activated carbons obtained from coconut shells using H3PO4 chemical activation[J]. Adsorption-journal of the International Adsorption Society, 2009, 15(3):271-277.
[41] Yorgun S, Vural N, Demiral H. Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation[J]. Microporous & Mesoporous Materials, 2009, 122(s1-3):189-194.
[42] Yang H, Li S, Chen J, et al. Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation:Adsorption capacity, kinetic and isotherm studies[J]. Applied Surface Science, 2014, 293(3):160-168.
[43] Kılıç M, Çisem Kırbıyık, Özge Çepelioğullar, et al. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis[J]. Applied Surface Science, 2013, 283(14):856-862.
[44] Liang S, Guo X, Tian Q. Adsorption of Pb2+ and Zn2+ from aqueous solutions by sulfured orange peel[J]. Desalination, 2011, 275(1-3):212-216.
[45] Rivera-Utrilla J, Sánchez-Polo M, Gómez-Serrano V, et al. Activated carbon modifications to enhance its water treatment applications. An overview[J]. Journal of Hazardous Materials, 2011, 187(s1-3):1-23.
[46] Rosas J M, Ruiz-Rosas R, Rodríguez-Mirasol J, et al. Kinetic study of the oxidation resistance of phosphorus-containing activated carbons[J]. Carbon, 2012, 50(4):1523-1537.
[47] Rosas J M, Bedia J, Rodríguez-Mirasol J, et al. HEMP-derived activated carbon fibers by chemical activation with phosphoric acid[J]. Fuel, 2009, 88(1):19-26.
[48] 黄律先. 木材热解工艺学[M]. 北京:中国林业出版社, 1996:70-159. Huang Lüxian. The technology of wood pyrolysis[M]. Beijing:China Forestry Publishing, 1996:70-159.
[49] Ismadji S, Sudaryanto Y, Hartono S B, et al. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust:Pore structure development and characterization.[J]. Bioresource Technology, 2005, 96(12):1364-1369.
[50] Lua A C, Yang T. Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells[J]. Journal of Colloid & Interface Science, 2004, 276(2):364-72.
[51] Kouotou D, Manga H N, Baçaoui A, et al. Optimization of activated carbons prepared by H3PO4 and steam activation of oil palm shells[J]. Plos One, 2015, 10(7):1735-1740.
[52] Usmani T H, Ahmad T W, Yousufzai A H K. Preparation and liquidphase characterization of granular activated-carbon from rice husk[J]. Bioresource Technology, 1994, 48(1):31-35.
[53] Olivares-Marín M, Fernández-González C, Macías-García A, et al. Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid[J]. Energy & Fuels, 2007, 21(5):2942-2949.
[54] 杨加赢, 赖文峰, 张安平, 等. 树叶活性炭的制备及表征[J]. Advances in Material Chemistry, 2015, 3:45-52. Yang Jiaying, Lai Wenfeng, Zhang Ping'an, et al. Preparation and Characterization of Leaves Activated Carbon[J]. Advances in Material Chemistry, 2015, 3:45-52.
[55] El-Sayed G O, Yehia M M, Asaad A A. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid[J]. Water Resources & Industry, 2014(s7-8):66-75.
[56] 王增辉, 高晋生. 碳素材料[M]. 上海:华东化工学院出版社, 1991:220-228. Wang Zenghui, Gao Jinsheng. Carbon Material[M]. Shanghai:The Press of East China University of Science and Technology, 1991:220-228.
[57] 代晓东, 刘欣梅, 钱岭, 等. 化学物理耦合活化法制备活性炭[J]. 炭素技术, 2008, 4(4):30-34. Dai Xiaodong, Liu Xinmei, Qian ling, et al. Activated carbon prepared by coupling approach of physical and chemical activation[J]. Carbon Techniques, 2008, 4(4):30-34.
[58] Vilaplana-Ortego E, Lillo-Ródenas M A, Alcañiz-Monge J, et al. Isotropic petroleum pitch as a carbon precursor for the preparation of activated carbons by KOH activation[J]. Carbon, 2009, 47(8):2141-2142.
[59] Molina-Sabio M, Almansa C, RodríGuez-Reinoso F. Phosphoric acid activated carbon discs for methane adsorption[J]. Carbon, 2003, 41(11):2113-2119.
[60] Almansa C, Molina-Sabio M, Rodríguez-Reinoso F. Adsorption of methane into ZnCl2-activated carbon derived discs[J]. Microporous & Mesoporous Materials, 2004, 76(1-3):185-191.
[61] Ramos-Fernández J M, Martínez-Escandell M, Rodríguez-Reinoso F. Production of binderless activated carbon monoliths by KOH activation of carbon mesophase materials[J]. Carbon, 2008, 46(2):384-386.
[62] Kosaka H, Hirota H, Iwashima Y. Process for recovering a hydrophobic organic compound by absorption and desorption with a chemically activated shaped carbon:US, US 5118329 A[P]. 1992.
[63] 高尚愚, 安部郁夫, 周建斌, 等. 胶接过程对活性炭孔隙结构影响的研究[J]. 林产化学与工业, 2004, 20(3):60-64. Gao Shangyu, Ikuo Abe, Zhou Jianbin, et al. Study on the effect of the gluebond process upon the pore structure of activated carbon[J]. Chemstry and Industry of Forest Products, 2004, 20(3):60-64.
[64] 左宋林, 高尚愚. 胶粘剂及其用量对活性炭胶炭混合物液相吸附性能的影响[J]. 林产化工通讯, 2005, 39(3):5-9. Zuo Zonglin, Gao Shangyu. Influence of bonding process on the adsorption capacity of activated carbon composite in aqueous phase[J]. Journal of Chemical Industry of Forest Products, 2005, 39(3):5-9.
[65] Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, et al. Activated carbon monoliths for methane storage:influence of binder[J]. Carbon, 2002, 40(15):2817-2825.
[66] 李建刚, 李开喜, 凌立成, 等. 成型活性炭的制备及其甲烷吸附性能的研究[J]. 新型炭材料, 2004, 19(2):114-118. Li Jiangang, Li Kaixi, Ling licheng, et al. The preparation and methane adsorption of formed activated carbon[J]. New Carbon Materials, 2004, 19(2):114-118.
[67] 袁爱军, 查庆芳, 李兆丰, 等. 天然气储存用多孔炭的研究II. 粉状多孔炭的成型及其二次活化[J]. 炭素, 2004, 23(1):1-5. Yuan Aijun, Zha Qingfang, Li Zhaofeng, et al. Study of porous carbons for storage of natural gas II. Molding of Porous Carbon and Re-activation[J]. Carbon Techniques, 2004, 23(1):1-5.
[68] Qiao W, Korai Y, Mochida I, et al. Preparation of an activated carbon artifact:factors influencing strength when using a thermoplastic polymer as binder[J]. Carbon, 2001, 39(15):2355-2368.
[69] 宋燕, 凌立成, 李开喜, 等. 成型活性炭对甲烷吸附性能研究[J]. 新型炭材料, 2000, 15(4):13-16. Song Yan, Ling Licheng, Li Kaixi, et al. Adsorption behavior of methane on formed activated carbon[J]. New Carbon Materials, 2000, 15(4):13-16.
[70] Nguyen-Thanh D, Bandosz T J. Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide[J]. Carbon, 2005, 43(2):359-367.
[71] Yates M, Blanco J, Avila P, et al. Honeycomb monoliths of activated carbons for effluent gas purification[J]. Microporous & Mesoporous Materials, 2000, 37(1):201-208.
[72] Yates M, Blanco J, Martin-Luengo M A, et al. Vapour adsorption capacity of controlled porosity honeycomb monoliths[J]. Microporous & Mesoporous Materials, 2003, 65(s2-3):219-231.
[73] 闫新龙, 刘欣梅, 乔柯, 等. 成型活性炭制备技术研究进展[J]. 化工进展, 2008, 12(12):1868-1872. Yan Xinlong, Liu Xinmei, Qiao Ke, et al. Research progress of preparation technique of activated carbon monolith[J]. Chemical industry and engineering progress, 2008, 12(12):1868-1872.
[74] 苏芳, 孟庆函, 宋怀河. 添加致孔剂制备树脂基活性炭及电容性能研究[J]. 功能材料, 2007, 1:97-100. Su Fang, Meng Qinghan, Song Huaihe. Study on the performance of activated carbon prepared by carbonization polymer blends made of PF with PVB and PEG for EDLC[J]. Journal of Functional Materials, 2007, 1:97-100.
[75] 李建刚, 李开喜, 凌立成, 等. 成型活性炭的制备及其甲烷吸附性能的研究[J]. 新型炭材料, 2004, 2(2):114-118. Li Jiangang, Li Kaixi, Ling Licheng, et al. The preparation and methane adsorption of formed activated carbon[J]. New Carbon Materials, 2004, 2(2):114-118.
[76] 张湘平, 刘洁波. 吸收法和吸附法油气回收技术的联合应用[J]. 石油化工环境保护, 2006, 3(3):57-61. Zhang Xiangping, Liu Jiebo. Absorption method and adsorption method combing applied to oil and gas recovery[J]. Environmental Protection in Petrochemical Industry, 2006, 3(3):57-61.
[77] Qian Q, Gong C, Zhang Z, et al. Removal of VOCs by activated carbon microspheres derived from polymer:a comparative study[J]. Adsorption-journal of the International Adsorption Society, 2015, 21(4):333-341.
[78] Chiang H L, Chiang P C, Huang C P. Ozonation of activated carbon and its effects on the adsorption of VOCs exemplified by methylethylketone and benzene[J]. Chemosphere, 2002, 47(3):267-275.
[79] 汤进华, 梁晓怿, 龙东辉, 等. 活性炭孔结构和表面官能团对吸附甲醛性能影响[J]. 炭素技术, 2007, 26(3):21-25. Tang Jinhua, Liang Xiaoyi, Long Donghui, et al. Effects of micropore and functional groups of activated carbon on adsorption behavior of formaldehyde[J]. Carbon Techniques, 2007, 26(3):21-25.
[80] Gil R R, Ruiz B, Lozano M S, et al. VOCs removal by adsorption onto activated carbons from biocollagenic wastes of vegetable tanning[J]. Chemical Engineering Journal, 2014, 245(6):80-88.
[81] Yakout S M. Removal of the hazardous, volatile, and organic compound benzene from aqueous solution using phosphoric acid activated carbon from rice husk[J]. Anaerobe, 2014, 8(1):1-7.
[82] Abdelouahab-Reddam Z, Mail R E, Coloma F, et al. Platinum supported on highly-dispersed ceria on activated carbon for the total oxidation of VOCs[J]. Applied Catalysis A General, 2015, 494:87-94.
Outlines

/