[1] Liu J W, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles[J]. Journal of the American Chemical Society, 2003, 125(22): 6642-6643.
[2] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2 + ) in aqueous media using DNA-functionalized gold nanoparticles [J]. Angewandte Chemie International Edition, 2007, 46(22): 4093-4096.
[3] Ai K, Liu Y, Lu L. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula[J]. Journal of the American Chemical Society, 2009, 131 (27): 9496-9497.
[4] Li W, Liang C, Zhou W, et al. Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells[J]. The Journal of Physical Chemistry B, 2003, 107(26): 6292-6299.
[5] Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006, 443(7107): 63-66.
[6] Jain J, Arora S, Rajwade J M, et al. Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use[J]. Molecular Pharmaceutics, 2009, 6(5): 1388-1401.
[7] Kumar K, Duan H, Hegde R S, et al. Printing colour at the optical diffraction limit[J]. Nature Nano, 2012, 7(9): 557-561.
[8] Ko S H, Park I, Pan H, et al. Direct Nanoimprinting of metal nanoparticles for nanoscale electronics fabrication[J]. Nano Letters, 2007, 7(7): 1869-1877.
[9] Hadjipanayis C G, Machaidze R, Kaluzova M, et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma[J]. Cancer Research, 2010, 70(15): 6303-6312.
[10] Zhu A, Qu Q, Shao X, et al. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions[J]. Angewandte Chemie, 2012, 124 (29): 7297-7301.
[11] Yu J H, Kwon S H, Petrasek Z, et al. High-resolution three-photon biomedical imaging using doped ZnS nanocrystals[J]. Nature Materials, 2013, 12(4): 359-366.
[12] Ma N, Yang J, Stewart K M, et al. DNA-Passivated CdS Nanocrystals: Luminescence, bioimaging, and toxicity profiles[J]. Langmuir, 2007, 23 (26): 12783-12787.
[13] Lim S F, Riehn R, Ryu W S, et al. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in caenorhabditis elegans[J]. Nano Letters, 2006, 6(2): 169-174.
[14] Chatterjee D K, Rufaihah A J, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals[J]. Biomaterials, 2008, 29(7): 937-943.
[15] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013-2016.
[16] Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016-2018.
[17] Yezhelyev M V, Al-Hajj A, Morris C, et al. In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots[J]. Advanced Materials, 2007, 19(20): 3146-3151.
[18] Metz S, Bonaterra G, Rudelius M, et al. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro[J]. Eur Radiol, 2004, 14(10): 1851-1858.
[19] Shapiro E M, Skrtic S, Koretsky A P. Sizing it up: Cellular MRI using micron-sized iron oxide particles[J]. Magnetic Resonance in Medicine, 2005, 53(2): 329-338.
[20] Mei Q, Jiang C, Guan G, et al. Fluorescent graphene oxide logic gates for discrimination of iron (3+) and iron (2+) in living cells by imaging [J]. Chemical Communications, 2012, 48(60): 7468-7470.
[21] Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Research, 2008, 1(3): 203-212.
[22] He H, Xie C, Ren J. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging[J]. Analytical Chemistry, 2008, 80(15): 5951-5957.
[23] Wang H, Huff T B, Zweifel D A, et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(44): 15752-15756.
[24] Liu C L, Ho M L, Chen Y C, et al. Thiol-functionalized gold nanodots: Two-photon absorption property and imaging in vitro[J]. The Journal of Physical Chemistry C, 2009, 113(50): 21082-21089.
[25] Wang C, Li J, Amatore C, et al. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells[J]. Angewandte Chemie International Edition, 2011, 50(49): 11644-11648.
[26] Wang J, Zhang G, Li Q, et al. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters[J]. Scientific Reports, 2013, 1157(3): 1-7.
[27] Choi S, Yu J, Patel S A, et al. Tailoring silver nanodots for intracellular staining[J]. Photochemical & Photobiological Sciences, 2011, 10(1): 109-115.
[28] Yu J, Patel S A, Dickson R M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters[J]. Angewandte Chemie, 2007, 119(12): 2074-2076.
[29] Gao S, Chen D, Li Q, et al. Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters[J]. Scientific Reports, 2014, 1038(4): 1-6.
[30] Lee H, Lee K, Kim I K, et al. Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species[J]. Advanced Functional Materials, 2009, 19(12): 1884-1890.
[31] Seferos D S, Giljohann D A, Hill H D, et al. Nano-flares: Probes for transfection and mRNA detection in living cells[J]. Journal of the American Chemical Society, 2007, 129(50): 15477-15479.
[32] Park H, Lee S, Chen L, et al. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods[J]. Physical Chemistry Chemical Physics, 2009, 11(34): 7444-7449.
[33] Chon H, Lee S, Yoon S Y, et al. Simultaneous immunoassay for the detection of two lung cancer markers using functionalized SERS nanoprobes[J]. Chemical Communications, 2011, 47(46): 12515-12517.
[34] Wang Z, Zong S, Yang J, et al. Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells[J]. Biosensors and Bioelectronics, 2011, 26(6): 2883-2889.
[35] von Maltzahn G, Centrone A, Park J H, et al. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed nearinfrared imaging and photothermal heating[J]. Advanced Materials, 2009, 21(31): 3175-3180.
[36] Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007, 58(1): 267-297.
[37] Homola J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chemical Reviews, 2008, 108(2): 462-493.
[38] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors [J]. Chemical Reviews, 2011, 111(6): 3828-3857.
[39] Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chemical Reviews, 2005, 105(4): 1025-1102.
[40] Lee K J, Browning L M, Nallathamby P D, et al. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos[J]. Chemical Research in Toxicology, 2012, 25(5): 1029-1046.
[41] Lee K J, Nallathamby P D, Browning L M, et al. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos[J]. ACS Nano, 2007, 1(2): 133-143.
[42] Nallathamby P D, Lee K J, Xu X H. Design of stable and uniform single nanoparticle photonics for in vivo dynamics imaging of nanoenvironments of zebrafish embryonic fluids[J]. ACS Nano, 2008, 2 (7): 1371-1380.
[43] Xu X H, Brownlow W J, Kyriacou S V, et al. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging[J]. Biochemistry, 2004, 43(32): 10400-10413.
[44] Xu X H, Chen J, Jeffers R B, et al. Direct Measurement of sizes and dynamics of single living membrane transporters using nanooptics[J]. Nano Letters, 2002, 2(3): 175-182.
[45] Huang X, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 2006, 128(6): 2115-2120.
[46] Nan X, Sims P A, Xie X S. Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision[J]. ChemPhysChem, 2008, 9(5): 707-712.
[47] Jun Y W, Sheikholeslami S, Hostetter D R, et al. Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level[J]. Proceedings of the National Academy of Sciences, 2009, 106(42): 17735-17740.
[48] Lee C W, Chen M J, Cheng J Y, et al. Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy[J]. Journal of Biomedical Optics, 2009, 14(3): 034016-1-6.
[49] Wang S H, Lee C W, Chiou A, et al. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images[J]. Journal of Nanobiotechnology, 2010, 8:33.