Exclusive

Method for wind turbine blade FSI numerical simulation

  • WANG Weilong ,
  • TIAN De ,
  • DENG Ying ,
  • LIN Junjie
Expand
  • State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China

Received date: 2015-08-20

  Revised date: 2015-10-30

  Online published: 2016-02-04

Abstract

Taking a 5 MW wind turbine blade as an example in our research, a rotor rotation simulation for the fluid-structure interaction is made. The combination of the wind rotation speed and the inflow velocity is simulated by considering the wind shear effect, and the torsion angles of the blade airfoil at different cross sections are modified, to establish the rotation simulation model of a wind turbine blade. The wind tunnel test of the wind turbine blade is simulated through a finite element software. The air pressure and the flow speed under the rotation effect around the blade together with the blade surface pressure are simulated. Using a data exchange platform to exchange the blade structure displacement and the surface pressure data, obtained through structure and fluid calculations, respectively, the fluidstructure interaction results are obtained. The results are compared with those at the rated wind speed and the reference experiment, and the rotation simulation method is verified.

Cite this article

WANG Weilong , TIAN De , DENG Ying , LIN Junjie . Method for wind turbine blade FSI numerical simulation[J]. Science & Technology Review, 2016 , 34(2) : 59 -64 . DOI: 10.3981/j.issn.1000-7857.2016.2.008

References

[1] 李媛, 康顺, 仇永兴, 等. 风切变条件下风轮流固耦合数值模拟研究 [J]. 工程热物理学报, 2013, 34(3): 462-466. Li Yuan, Kang Shun, Qiu Yongxing, et al. Numerieal simulation of fluid-strueture coupling of wind turbine rotor in wind shear flow[J]. Journal of Engineering Thermophysics, 2013, 34(3): 462-466.
[2] 胡丹梅, 张志超, 孙凯, 等. 风力机叶片流固耦合计算分析[J]. 中国电机工程学报, 2013, 33(17): 98-104. Hu Danmei, Zhang Zhichao, Sun Kai, et al. Computational analysis of wind turbine blades based on fluid-structure interaction[J]. Proceedings of the CSEE, 2013, 33(17): 98-104.
[3] Bazilevs Y, Hsu M C, Akkerman I, et al. 3D simulation of wind turbine rotors at full scale. part I: geometry modeling and aerodynamics[J]. International Journal for Numerical Methods in Fluids, 2010, 65(1-3): 207-235.
[4] Bazilevs Y, Takizawa K, Tezduyar T E, et al. Aerodynamic and FSI analysis of wind Turbines with the ALE-VMS and ST-VMS methods[J]. Archives of Computational Methods in Engineering, 2014, 21(4): 359-398.
[5] Hsu M C, Bazilevs Y. Fluid-structure interaction modeling of wind turbines: Simulating the full machine[J]. Computational Mechanics, 2012, 50(6): 821-833.
[6] Zhang Jianping, Guo Liang. The influence of wind shear on vibration of geometrically nonlinear wind turbine blade under fluid-structure interaction[J]. Ocean Engineering, 2014, 84(1): 14-19.
[7] 任年鑫, 李玉刚, 欧进萍. 浮式海上风力机叶片气动性能的流固耦合分析[J]. 计算力学学报, 2014, 31(1): 91-95. Ren Nianxin, Li Yugang, Ou Jinping. The fluid-structure interaction analysis of aerodynamic performance of floating offshore wind turbine blade[J]. Chinese Journal of Computational Mechanics, 2014, 31(1): 91-95.
[8] 陈海萍, 孙文磊, 郭健. 风力发电机叶片的流固耦合分析[J]. 机床与液压, 2010, 38(19): 79-82. Chen Haiping, Sun Wenlei, Guo Jian. Fluid-solid coupling analysis on wind generator blade[J]. Machine Tool & Hydraulics, 2010, 38(19): 79-82.
[9] 李德源, 莫文威, 夏鸿建, 等. 水平轴风力机柔性叶片气弹耦合分析 [J]. 太阳能学报, 2015, 36(3): 734-742. Li Deyuan, Mo Wenwei, Xia Hongjian, et al. The aeroelastic coupling analysis of flexible blades for a horizontal axis wind turbine[J]. Acta Energiae Solaris Sinica, 2015, 36(3): 734-742.
[10] 王旭东, 王立存, 夏洪均. 基于气弹耦合理论的风力机气动与结构性能数值模拟[J]. 机械设计与研究, 2015, 31(2): 62-69. Wang Xudong, Wang Licun, Xia Hongjun. Numerical simulation of aerodynamic and structural performance for wind turbine blades based on aeroelastic coupling theory[J]. Machine Design and Research, 2015, 31(2): 62-69.
[11] Dong O Y, Oh J K. Predicting wind turbine blade loads and aeroelastic response using a coupled CFD-CSD method[J]. Renewable Energy, 2014, 70(1): 184-196.
[12] 梁明轩. 风力机叶片流固耦合机理研究[D]. 沈阳工业大学, 2011. Liang Mingxuan. Research on Fluid-Structure Interaction Mechanism of Wind Turbine Blade[D]. Shenyang University of Technology, 2011.
[13] 杨华, 徐浩然, 沈文忠, 等. 4.5 m直径风力机模型气动实验方法[J]. 扬州大学学报: 自然科学版, 2012, 15(4): 55-59. Yang Hua, Xu Haoran, Shen Wenzhong, et al. The method of aerodynamic experiment for a wind turbine model with the diameter of 4.5 m[J]. Journal of Yangzhou University: Natural Science Edition, 2012, 15(4): 55-59.
[14] 潘旭. MW级风力发电机风轮叶片流固耦合强度分析[D]. 郑州大学, 2011.Pan Xu. Strength analysis of fluid solid interaction field of MW grade wind turbine bladeds[D]. Zhengzhou University, 2011.
[15] 陆洋, 周桂林. 水平轴风力机叶片气弹建模与响应分析[J]. 空气动力学学报, 2012, 30(2): 192-197. Lu Yang, Zhou Guilin. Modeling and analysis of the aeroelastic response of the horizontal axis wind turbine blade[J]. Acta Aerodynamica Sinica, 2012, 30(2): 192-197.
Outlines

/