Reviews

Application of ionic liquids in thermochromic materials

  • YU Linpo ,
  • CHEN George Zheng
Expand
  • Centre for Sustainable Energy Technologies, the University of Nottingham Ningbo China, Ningbo 315100, China

Received date: 2015-07-06

  Revised date: 2015-08-14

  Online published: 2016-01-07

Abstract

Because of existence of abundant hydroxyl groups, both of hydroxyly-3-methylimidazolium cation based ionic liquids and deep eutectic solvent can react with the Ni(II) complexes showing thermochromism. This novel thermochromic system can be driven by the solar heat, and are sensible and environmentally friendly. The ILs-Ni(II)-complex-PVDF composite films are thermochromic with different nickel complexes. Cryo-solvatochromism in response to cooling from room temperature to well below 0℃ can be achieved in a 1-hydroxylalkyl-3-methylimidazolium cation based ionic liquid, containing a Ni(II) complex and excess 1-butyl-3-methylimidazolium chloride. This review presents the recent fundamental and application work on a number of thermochromic and cryochromic systems based on Ni(II) complex and Ionic liquids, including the 1-hydroxylalkyl-3-methylimidazolium cation based ionic liquids and deep eutectic solvent.

Cite this article

YU Linpo , CHEN George Zheng . Application of ionic liquids in thermochromic materials[J]. Science & Technology Review, 2015 , 33(24) : 98 -105 . DOI: 10.3981/j.issn.1000-7857.2015.24.016

References

[1] Linert W, Fukuda Y, Camard A. Chromotropism of coordination com-pounds and its application in solution[J]. Coordination Chemistry Re-views, 2001, 218: 113-152.
[2] Seeboth A, Lotzsch D, Ruhmann R, et al. Thermochromic polymers-Function by design[J]. Chemical Reviews, 2014, 114(5): 3037-3068.
[3] Grubb W T, Kistiakowsky G B. On the nature of thermochromism[J]. Journal of the American Chemical Society, 1950, 72(1): 419-424.
[4] Koelsch C F. Steric factors in thermochromism of spiropyrans and in re-activities of certain methylene groups[J]. The Journal of Organic Chemis-try, 1951, 16(9): 1362-1370.
[5] Day J H. Thermochromism[J]. Chemical Reviews, 1963, 63(1): 65-80.
[6] Day J H. Thermochromism of inorganic compounds[J]. Chemical Reviews, 1968, 68(6): 649-657.
[7] Kamalisarvestani M, Saidur R, Mekhilef, et al. Performance, materials and coating technologies of thermochromic thin films on smart windows[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 353-364.
[8] Gao Y, Luo H, Zhang Z, et al. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing[J]. Nano Energy, 2012, 1(2): 221-246.
[9] Seeboth A, Ruhmann R, Muhling O. Thermotropic and thermochromic polymer based materials for adaptive solar control[J]. Materials, 2010, 3 (12): 5143-5168.
[10] Park I S, Park H J, Kim J-M. A soluble, low-temperature thermochro-mic and chemically reactive polydiacetylene[J]. ACS Applied Materi-als & Interfaces, 2013, 5(17): 8805-8812.
[11] Liu P, Liu L, Jiang K, et al. Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochro-mic display[J]. Small, 2011, 7(6): 732-736.
[12] Chung K, Cho J K, Park E S, et al. Three-dimensional in situ tempera-ture measurement in microsystems using Brownian motion of nanoparti-cles[J]. Analytical Chemistry, 2009, 81(3): 991-999.
[13] Vuillaume P Y, Sallenave X, Bazuin C G. Thermotropism in tail-end (dimethylamino) pyridinium polymethacrylates with bromine and octyl-sulfonate counterions[J]. Macromolecules, 2006, 39(24): 8339-8346.
[14] Clark E A, Lipson J E G. LCST and UCST behaviour in polymer solu-tions and blends[J]. Polymer, 2012, 53(2): 536-545.
[15] Sato T, Katayama K, Suzuki T, et al. UCST and LCST behaviour in polymer blends containing poly (methyl methacrylate-statstyrene) [J]. Polymer, 1998, 39(4): 773-780.
[16] Li J, Hong X, Liu Y, et al. Highly photoluminescent CdTe/poly (N-iso-propylacrylamide) temperature-sensitive gels[J]. Advanced Materials, 2005, 17(2): 163-166.
[17] Chung W Y, Lee S M, Koo S M, et al. Surfactant-free thermochromic hydrogel system: PVA/borax gel networks containing pH-sensitive dyes[J]. Journal of Applied Polymer Science, 2004, 91(2): 890-893.
[18] Seeboth A, Kriwanek J, Vetter R. Novel chromogenic polymer gel net-works for hybrid transparency and color control with temperature[J]. Advanced Materials, 2000, 12(19): 1424-1426.
[19] Wang H, Zhang K-Q. Photonic crystal structure with tunable structure color as colorimetric sensors[J]. Sensors, 2013, 13(4): 4192-4213.
[20] Ge J, Yin Y. Responsive photonic crystals[J]. Angewandte Chemie In-ternational Edition, 2011, 50(7): 1492-1522.
[21] Seeboth A, Lotzsch D, Potechius E, et al. Thermochromic effects of leuco dyes studied in polypropylene[J]. Chinese Journal of Polymer Sci-ence, 2006, 24(4): 363-368.
[22] MacLaren D C, White M A. Dye-developer interactions in the crystal violet lactone-lauryl gallate binary system: Implications for thermo-chromism[J]. Journal of Materials Chemistry, 2003, 13(7): 1695-1700.
[23] Reish M E, Huff G S, Lee W, et al. Thermochromism, Franck-Condon analysis and interfacial dynamics of a donor-acceptor copolymer with a low band gap[J]. Chemistry of Materials, 2015, 27(8): 2770-2779.
[24] Guo H, Zhang J, Porter D, et al. Ultrafast and reversible thermochro-mism of a conjugated polymer material based on the assembly of pep-tide amphiphiles[J]. Chemical Science, 2014, 5(11): 4189-4195.
[25] Tanioku C, Matsukawa K, Matsumoto A. Thermochromism and struc-tural change in polydiacetylenes including carboxy and 4-carboxyphe-nyl group as the intermolecular hydrogen bond linkages in the side chain[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 940-948.
[26] Ampornpun S, Montha S, Tumcharern G, et al. Odd-even and hydro-phobicity effect of diacetylene alkyl chains on thermochromic revers-ibility of symmetrical and unsymmetrical diyndiamide polydiacetylenes[J]. Macromolecules, 2012, 45(22): 9038-9045.
[27] Jelinek R, Ritenberg M. Polydiacetylene -recent molecular advances and applications[J]. RSC Advances, 2013, 3(44): 21192-21201.
[28] Tamaki H, Watanabe H, Kamiyama S, et al. Size-dependent thermo-chromism through enhanced electron-phonon coupling in 1 nm quan-tum dots[J]. Angewandte Chemie International Edition, 2014, 53(40): 10706-10709.
[29] Serier-Brault H, Thibault L, Legrain M, et al. Thermochromism in Yt-trium iron garnet compounds[J]. Inorganic Chemistry, 2014, 53(23): 12378-12383.
[30] Barron S C, Gorham J M, Patel M P, et al. High-throughput measure-ments of thermochromic behaviour in V1-xNbxO2 combinatorial thin film libraries[J]. ACS Combinatorial Science, 2014, 16(10): 526-534.
[31] Yu L, Chen G Z. Cryo-solvaochromism in ionic liquids[J]. RSC Advances, 2014, 4(76): 40281-40285.
[32] Gu C D, Tu J P. Thermochromic behaviour of chloro-nickel(II) in deep eutectic solvents and their application in thermochromic compos-ite films[J]. RSC Advances, 2011, 1(7): 1220-1227.
[33] Wei X, Yu L, Wang D, et al. Thermo-solvatochromism of chloro-nick-el complexes in 1-hydroxyalkyl-3-methyl-imidazolium cation based ionic liquids[J]. Green Chemistry, 2008, 10(3): 296-305.
[34] Turchetti D A, Domingues R A, Zanlorenzi C, et al. A photophysical interpretation of the thermochromism of a polyfluorene derivative-Euro-pium complex[J]. The Journal of Physical Chemistry C, 2014, 118(51): 30079-30086.
[35] Hosokawa H, Funasako Y, Mochida T. Colorimetric solvent indicators based on Nafion membranes incorporating Nickel(II)-chelate complexes[J]. Chemistry -A European Journal, 2014, 20(46): 15014-15020.
[36] Wei X, Yu L, Jin X, et al. Solar-thermochromism of pseudocrystalline nanodroplets of ionic liquid-NiII complexes immobilized inside trans-lucent microporous PVDF films[J]. Advanced Materials, 2009, 21(7): 776-780.
[37] El-Ayaan U, Murata F, Fukuda Y. Thermochromism and solvatochro-mism in solution[J]. Monatshefte fur Chemie, 2001, 132(11): 1279-1294.
[38] Wasserscheid P, Welton T. Ionic liquids in synthesis[M]. Weinheim: Wiley-VCH Verlag, 2002: 44-45.
[39] Zhang J L, Gu C D, Fashu S, et al. Enhanced corrosion resistance of Co-Sn Alloy coating with a self-organized layered structure electrode-posited from deep eutectic solvent[J]. Journal of The Electrochemical Society, 2015, 162(1): D1-D8.
[40] Abbott A P, Harris R C, Holyoak F, et al. Electrocatalytic recovery of elements from complex mixtures using deep eutectic solvents[J]. Green Chemistry, 2015, 17(4): 2172-2179.
[41] Griffiths T R, Scarrow R K. Effects of cations upon absorption spectra. Part 2.-Formation of tetrahedral tetrachloronickelate(II) in aqueous so-lution[J]. Transactions of the Faraday Society, 1969, 65: 1727-1733.
[42] Scaife D E, Wood K P. Influence of temperature on some octahedraltetrahedral equilibria in solution[J]. Inorganic Chemistry, 1967, 6(2): 358-365.
[43] Fine D A. Tetrahedral bromide complexes of Nicekl(II) in organic sol-vent[J]. Inorganic Chemistry, 1965, 4(3): 345-350.
[44] Netzel D A, Droll H A. Chloride and bromide complexes of Nickel(II) in aqueous solution[J]. Inorganic Chemistry, 1963, 2(2): 412-413.
[45] Griffiths T R, Scarrow P K. Effect of cations upon absorption spectra. Part 4. -Octahedral-tetrahedral equilibria between chloro-nickel(II) complexes in ethylene glycol and glycerol[J]. Transactions of the Fara-day Society, 1969, 65: 3179-3186.
[46] Abbott A P, Capper G, Davies D L, et al. Selective extraction of met-als from oxide matrixes using choline-based ionic liquids[J]. Inorganic Chemistry, 2005, 44(19): 6497-6499.
[47] Abbott A P, Ttaib K E, Ryder K S, et al. Electrodeposition of nickel using eutectic based ionic liquids[J]. Transactions of the Institute of Materials Finishing, 2008, 86(4): 234-240.
Outlines

/