Reviews

Breaking the stasis of current plant systematics

  • WANG Xin ,
  • LIU Zhongjian ,
  • LIU Wenzhe ,
  • ZHANG Xin ,
  • GUO Xuemin ,
  • HU Guangwan ,
  • ZHANG Shouzhou ,
  • WANG Yaling ,
  • LIAO Wenbo
Expand
  • 1. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, China;
    2. Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and Orchid Conservation and Research Center of Shenzhen, Shenzhen 518114, China;
    3. College of Life Sciences, Northwest University, Xi'an 710069, China;
    4. College of Forestry, Northwest A&F University, Yangling 712100, China;
    5. College of Life Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China;
    6. Wuhan Botanical Garden, CAS, Wuhan 430074, China;
    7. Shenzhen Fairylake Botanical Garden, Shenzhen 518004, China;
    8. Xi'an Botanical Garden of Shaanxi Province, Xi'an 710061, China;
    9. School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China

Received date: 2015-07-02

  Revised date: 2015-09-02

  Online published: 2015-12-15

Abstract

The plant systematics has been dominated by the Euanthium Theory for over hundred years. Despite all progress made, several important problems defy solutions and block further progress of botany, and one sometimes even sees conflicts among different branches and schools in botany. From the history of botany in the past centuries, it is realized that the stasis in the current plant systematics is actually a result of a blind reverence to authority and the self-restriction within the dominating theories. Any progress in the plant systematics would not be possible without dropping these burdens. A new testable hypothesis on the making of flowers is advanced in this paper.

Cite this article

WANG Xin , LIU Zhongjian , LIU Wenzhe , ZHANG Xin , GUO Xuemin , HU Guangwan , ZHANG Shouzhou , WANG Yaling , LIAO Wenbo . Breaking the stasis of current plant systematics[J]. Science & Technology Review, 2015 , 33(22) : 97 -105 . DOI: 10.3981/j.issn.1000-7857.2015.22.017

References

[1] Esau K. Plant anatomy [M]. New York: John WIley & Sons Inc, 1953.
[2] Eames A J. Morphology of the angiosperms [M]. New York: McGraw- Hill Book Company, Inc, 1961.
[3] Waites R, Hudson A. phantastica: A gene required for dorsoventrality of leaves in Antirrhinum majus[J]. Development, 1995, 121: 2143-2154.
[4] Tasaka M. From central-peripheral to adaxial-abaxial [J]. Trends in Plant Science, 2001, 6: 548-550.
[5] Arber E A N, Parkin J. On the origin of angiosperms[J]. Journal of the Linnean Society of London, Botany, 1907, 38: 29-80.
[6] Cronquist A. The evolution and classification of flowering plants[M]. Bronx: New York Botanical Garden, 1988.
[7] Florin R. The morphology of Trichopitys heteromorpha Saporta, a seed plant of Palaeozoic age, and the evolution of the female flowers in the Ginkgoinae[J]. Acta Horti Bergiani, 1949, 15: 79-109.
[8] Meeuse A D J. From ovule to ovary: A contribution to the phylogeny of the megasporangium[J]. Acta Biotheoretica, 1963, XVI: 127-182.
[9] Herr J M J. The origin of the ovule[J]. American Journal of Botany, 1995, 82: 547-564.
[10] Wang X, Luo B. Mechanical pressure, not genes, makes ovulate parts leaf-like in Cycas[J]. American Journal of Plant Sciences, 2013, 4: 53-57.
[11] Sattler R, Lacroix C. Development and evolution of basal cauline placentation: Basella rubra[J]. American Journal of Botany, 1988, 75: 918-927.
[12] Wilson C L. The telome theory and the origin of the stamen [J]. American Journal of Botany, 1942, 29: 759-764.
[13] Taylor D W. Angiosperm ovule and carpels: their characters and polarities, distribution in basal clades, and structural evolution [J]. Postilla, 1991, 208: 1-40.
[14] Wang X. The dawn angiosperms[M]. Heidelberg: Springer, 2010.
[15] Engler A, Prantl K. Die natuerlichen Pflanzenfamilien, III [M]. Leipizig: Verlag von Wilhelm Engelmann, 1898.
[16] Bhattacharyya B, Johri B M. Flowering plants —— Taxonomy and phylogeny[M]. Berlin: Springer-Verlag, 1998.
[17] Bessey C E. Phylogeny and taxonomy of the angiosperms[J]. Botanical Gazette, 1897, 24: 145-178.
[18] Canright J E. The comparative morphology and relationships of the Magnoliaceae. III. Carpels[J]. American Journal of Botany, 1960, 47: 145-155.
[19] Carlquist S. Toward acceptable evolutionary interpretation of floral anatomy [J]. Phytomorphology, 1969, 19: 332-362.
[20] Takhtajan A. Flowering plants, origin and dispersal[M]. Edinburgh: Oliver & Boyd Ltd, 1969.
[21] Qiu Y L, Lee J, Bernasconi-Quadroni F, et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes[J]. Nature, 1999, 402: 404-407.
[22] APG. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III[J]. Botanical Journal of Linnean Society, 2009, 161: 105-121.
[23] Endress P K, Doyle J A. Reconstructing the ancestral angiosperm flower and its initial specializations[J]. American Journal of Botany, 2009, 96: 22-66.
[24] Crane P R. Phylogenetic analysis of seed plants and the origin of angiosperms[J]. Annals Missouri Botanical Garden, 1985, 72: 716-793.
[25] Bateman R M, Hilton J, Rudall P J. Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top- down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers[J]. Journal of Experimental Botany, 2006, 57: 3471- 3503.
[26] Sun G, Dilcher D L, Zheng S, et al. In search of the first flower: a Jurassic angiosperm, Archaefructus, from Northeast China[J]. Science, 1998, 282: 1692-1695.
[27] Wieland G R. American fossil cycads[M]. Washington DC: The Wilkens Sheiry Printing Co, 1906.
[28] Florin R. Evolution in cordaites and conifers[J]. Acta Horti Bergiani, 1951, 15: 285-388.
[29] Zhou Z, Zheng S. The missing link in Ginkgo evolution[J]. Nature, 2003, 423: 821-822.
[30] Rothwell G W, Crepet W L, Stockey R A. Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales[J]. American Journal of Botany, 2009, 96: 296-322.
[31] Parkin J. The phylogenetic classification of flowering plants[J]. Nature, 1925, 115: 385-387.
[32] Liu W-Z, Hilu K, Wang Y-L. From leaf and branch into a flower: Magnolia tells the story [J]. Botanical Studies, 2014, 55: 28.
[33] Sun G, Ji Q, Dilcher D L, et al. Archaefructaceae, a new basal angiosperm family [J]. Science, 2002, 296: 899-904.
[34] Ji Q, Li H, Bowe M, et al. Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China [J]. Acta Geologica Sinica, 2004, 78: 883-896.
[35] Wang X, Zheng X T. Reconsiderations on two characters of early angiosperm Archaefructus[J]. Palaeoworld, 2012, 21: 193-201.
[36] Goethe J W V. Versuch die Metamorphose der Pflanzen zu erklären[M]. Gotha: Carl Wilhelm Ettinger, 1790.
[37] Zimmermann W. Die Phylogenie der Pflanzen[M]. Stuttgart: Fischer, 1959.
[38] Arber A. The natural philosophy of plant form[M]. Cambridge: University Press, 1950.
[39] Arber A. Goethe's botany [J]. Chronica Botanica, 1946, 10: 63-126.
[40] Worsdell W C. The vascular structure of the sporophylls of the Cycadaceae [J]. Annals of Botany, 1898, os-12: 203-241.
[41] Stevenson D W. Morphology and systematics of the Cycadales [J]. Memoirs of the New York Botanical Garden, 1990, 57: 8-55.
[42] Rousseau P, Vorster P J, Wyk A E V. Reproductive anomalies in Encephalartos (Zamiaceae) [C]//Calonje M. Cycad 2015, 10th International Conference on Cycad Biology. Medellín, Colombia: Cycad 2015 Organizing Committee, 2015, 53.
[43] Eames A J. The relationships of Ephedrales[J]. Phytomorphology 1952, 2: 79-100.
[44] Rothwell G W, Stockey R A. Evolution and phylogeny of Gnetophytes: Evidence from the anatomically preserved seed cone Protoephedrites eamesii gen. et sp. nov. and the seeds of several Bennettitalean species[J]. International Journal of Plant Sciences, 2013, 174: 511-529.
[45] Kerp H, Wellman C H, Krings M, et al. Reproductive organs and in situ spores of Asteroxylon mackiei Kidston & Lang, the most complex plant from the Lower Devonian Rhynie chert[J]. International Journal of Plant Sciences, 2013, 174: 293-308.
[46] Taylor D W, Kirchner G. The origin and evolution of the angiosperm carpel [M]// Taylor D W, Hickey L J. Flowering Plant Origin, Evolution & Phylogeny. New York: Chapman & Hall, 1996.
[47] Melchior H A. Engler's Syllabus der Pflanzenfamilien. II. Angiospermen Übersicht über die Florengebiete der Erde[M]. Berlin: Gebrüder Borntraeger, 1964.
[48] Corner E J H. The seeds of dicotyledons[M]. Cambridge: Cambridge University Press, 1976.
[49] Foster A S, Gifford E M. Comparative morphology of vascular plants[M]. W H Freeman and Company, 1974.
[50] Van Heel W A. A SEM-investigation on the development of free carpels [J]. Blumea, 1981, 27: 499-522.
[51] Buzgo M, Soltis P S, Soltis D E. Floral developmental morphology of Amborella trichopoda (Amborellaceae)[J]. International Journal of Plant Sciences, 2004, 165: 925-947.
[52] Williams J H. Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase[J]. American Journal of Botany, 2009, 96: 144-165.
[53] Lister G. On the origin of the placentas in the tribe Alsineae of the order Caryophylleae[J]. Journal of Linnean Society Botany, 1884, 20: 423-429.
[54] Zheng H C, Ma S W, Chai T Y. The ovular development and perisperm formation of Phytolacca americana (Phytolaccaceae) and their systematic significance in Caryophyllales[J]. Journal of Systematics and Evolution, 2010, 48: 318-325.
[55] Guo X M, Xiao X, Wang G X, et al. Vascular anatomy of kiwi fruit and its implications[J]. Frontiers in Plant Science, 2013, 4: 391.
[56] Bechtel A R. The floral anatomy of the Urticales[J]. American Journal of Botany, 1921, 8: 386-410.
[57] Omori Y, Terabayashi S. Gynoecial vascular anatomy and its systematic implications in Celtidaceae and Ulmaceae (Urticales) [J]. Journal of Plant Research, 1993, 106: 249-258.
[58] Liu W Z, Kang H Q, Zheng H C, et al. An investigation on the sexual reproductive cycle in Tapiscia sinensis [J]. Acta Phytotaxonomica Sinica, 2008, 46: 175-182.
[59] Nuraliev M S, Sokoloff D D, Oskolski A A. Floral anatomy of Asian Schefflera (Araliaceae, Apiales): Comparing variation of flower groundplan and vascular patterns [J]. International Journal of Plant Sciences, 2011, 172: 735-762.
[60] Endress P K. Carpels of Brasenia (Cabombaceae) are completely ascidiate despite a long stigmatic crest[J]. Annals of Botany, 2005, 96: 209-215.
[61] Skinner D J, Hill T A, Gasser C S. Regulation of ovule development[J]. Plant Cell, 2004, 16: S32-S45.
[62] Mathews S, Kramer E M. The evolution of reproductive structures in seed plants: A re-examination based on insights from developmental genetics [J]. New Phytologist, 2012, 194: 910-923.
[63] Roe J L, Nemhauser J L, Zambryski P C. TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis[J]. Plant Cell, 1997, 9: 335-353.
[64] Wynn A N, Seaman A A, Jones A L, et al. Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development[J]. Frontiers in Plant Science, 2014, 5: 130.
[65] Angenent G C, Franken J, Busscher M, et al. A novel class of MADS box genes is involved in ovule development in Petunia[J]. The Plant Cell Online, 1995, 7: 1569-1582.
[66] Li H, Liang W, Yin C, et al. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy [J]. Plant Physiology, 2011, 156: 263-274.
[67] Wang X, Wang S. Xingxueanthus: an enigmatic Jurassic seed plant and its implications for the origin of angiospermy [J]. Acta Geologica Sinica, 2010, 84: 47-55.
[68] Liu Z J, Wang X. A perfect flower from the Jurassic of China [J]. Historical Biology, 2015: 1-13.
[69] Krassilov V. On Montsechia, an angiospermoid plant from the Lower Cretaceous of Las Hoyas, Spain: New data and interpretations [J]. Acta Palaeobotanica, 2011, 51: 181-205.
[70] Gomez B, Daviero-Gomez V, Coiffard C, et al. Montsechia, an ancient aquatic angiosperm[J]. Proceedings of the National Academy of Sciences, 2015.
[71] Hickey L J, Taylor D W. Origin of angiosperm flower[M]//Taylor D W, Hickey L J. Flowering Plant Origin, Evolution & Phylogeny. New York: Chapman and Hall, 1996.
[72] Tucker S C, Kantz K E. Open carpels with ovules in Fabaceae[J]. International Journal of Plant Sciences, 2001, 162: 1065-1073.
[73] Endress P K. Patterns of angiospermy development before carpel sealing across living angiosperms: diversity, and morphological and systematic aspects [J]. Botanical Journal Linnean Society, 2015.
[74] Sokoloff D D, Remizowa M V, Macfarlane T D, et al. Comparative fruit structure in Hydatellaceae (Nymphaeales) reveals specialized pericarp dehiscence in some early- divergent angiosperms with ascidiate carpels [J]. Taxon, 2013, 62: 40-61.
[75] Hufford L. Developmental morphology of female flowers of Gyrostemon and Tersonia and floral evolution among Gyrostemonaceae [J]. American Journal of Botany, 1996, 83: 1471-1487.
[76] Ferrandiz C, Fourquin C, Prunet N, et al. Carpel development Advances in Botanical Research: Academic Press, 2010.
[77] Judd W S, Campbell S C, Kellogg E A, et al. Plant systematics: a phylogenetic approach [M]. Sunderland, MA: Sinauer Associate Inc, 1999.
[78] Tomlinson P B, Takaso T. Seed cone structure in conifers in relation to development and pollination: a biological approach [J]. Canadian Journal of Botany, 2002, 80: 1250-1273.
[79] Zhang Q, Sodmergen, Hu Y S, et al. Female cone development in Fokienia, Cupressus, Chamaecyparis and Juniperus (Cupressaceae)[J]. Acta Botanica Sinica, 2004, 46: 1075-1082.
[80] Hagerup O. On the origin of some angiosperms through Gnetales and the Coniferae. III. The gynaeceum of Salix cinerea [J]. Det Kongelige Danske Videnskabernes Selskab Biologiske Meddelelser, 1938, 14: 1- 34.
[81] Becker A, Saedler H, Theissen G. Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm, Gnetum gnemon [J]. Development Genes and Evolution, 2003, 213: 567-572.
[82] Vazquez-Lobo A, Carlsbecker A, Vergara-Silva F, et al. Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-devo hypotheses for gymnosperms [J]. Evolution and Development, 2007, 9: 446-459.
[83] Chanderbali A S, Yoo M- J, Zahn L M, et al. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower [J]. Proceedings of the National Academy of Sciences, 2010, 107: 22570-22575.
[84] Lovisetto A, Guzzo F, Tadiello A, et al. Molecular analyses of MADSbox genes trace back to gymnosperms the invention of fleshy fruits [J]. Molecular Biology and Evolution, 2011.
[85] Carlsbecker A, Sundström J F, Englund M, et al. Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs[J]. New Phytologist, 2013, 200: 261-275.
[86] Gramzow L, Weilandt L, Theißen G. MADS goes genomic in conifers: towards determining the ancestral set of MADS- box genes in seed plants[J]. Annals of Botany, 2014, 114: 1407-1429.
[87] Liu Z J, Wang X. An enigmatic Ephedra-like fossil lacking micropylar tube from the Lower Cretaceous Yixian Formation of Liaoning, China[J]. Palaeoworld, 2015, doi:10.1016/j.palwor.2015.07.005.
[88] Hutchinson J. The phylogeny of flowering plants. International congress of plant sciences, section of morphology, histology, and paleobotany[R]. Ithaca, New York, 1926: 413-421.
[89] Takhtajan A. Diversity and classification of flowering plants [M]. New York: Columbia University Press, 1997.
[90] Zhang X. The evolutionary origin of the integument in seed plants, Anatomical and functional constraints as stepping stones towards a new understanding[D]. Bochum: Ruhr-Universität Bochum, 2013.
[91] Feng M. The family Berberidaceae: floral development morphology, embryology and systematics[D]. Beijing: Institute of Botany, CAS, 1998.
Outlines

/