[1] Massachusetts Institute of Technology. The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. Boston, USA: Massachusetts Institute of Technology, 2006.
[2] Brown D. The US Hot Dry Rock program-20 years of experience in reservoir testing[C/OL]. [2015-03-31]. http://www.geothermal-energy. org/pdf/IGAstandard/WGC/1995/4-Brown.pdf.
[3] Brown D. 1995 verification flow testing of the HDR reservoir at Fenton Hill, New Mexico[R]. NM, USA: Los Alamos National Lab, 1995.
[4] Geothermal Technologies Program. An evaluation of enhanced geothermal system technology[R]. Energy Efficiency and Renewable Energy, America, 2008: 1-37.
[5] Tester J W, AlbrightJ N, Hot Dry Rock energy extraction field test: 75 days of operation of a prototype reservoir at fenton hill, segment 2 of phase I[R]. Informal Rep. No. LA-7771-MS, Los Alamos Scientific Laboratory, Los Alamos, NM, 1979.
[6] Duchane D. Geothermal energy: encyclopedia of chemical technology[M]. New York: Wiley, 1993: 512-539.
[7] Batchelor A S. Brief summary of some geothermal related studies in the United Kingdom[C]//2nd NATO//CCMS Geothermal Conference. Los Alamos, USA, 1977: 22-24.
[8] Batchelor A S. The stimulation of a hot dry rock geothermal reservoir in the Cornubian granite, England[C]//8th Workshop on Geothermal Reservoir Engineering. California: Stanford University Press, 1982: 237-248.
[9] Batchelor A S, Baria R, Hearn K. Monitoring the effects of hydraulic stimulation by microseismic event location: A case study[C]//SPE Annual Technical Conference and Exhibition. San Francisco: Society of Petroleum Engineers, 1983.
[10] Batchelor A S. Reservoir behaviour in a stimulated hot dry rock system[C]//11th Workshop on Geothermal Reservoir Engineering. California: Stanford University, 1986.
[11] Hori Y, Kitano K, Kaieda H, et al. Present status of the Ogachi HDR Project, Japan, and future plans[J]. Geothermics, 1999, 28(4): 637-645.
[12] Schroeder R, Swenson D, Shinohara N, et al. Strategies for the Hijiori long term flow test[C]//Proceeding 23rd Workshop on Geothermal Reservoir Engineering. California: Stanford University, 1998.
[13] Tenma N, Yamaguchi T, Tezuka K, et al. A study of the pressure-flow response of the Hijiori reservoir at the Hijiori HDR test site[C/OL].[2015-03-31]. A study of the pressure-flow response of the Hijiori reservoir at the Hijiori HDR test site.
[14] Kiho K. Study on surface area estimation of the Ogachi HDR reservoir by geochemical method[C]. Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28-June 10, 2000.
[15] Shin K, Ito H, Oikawa Y. Stress state at the Ogachi site[C/OL]. [2015-03-31]. http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/ R0395.PDF.
[16] Kaieda H, Jones R, Moriya H, et al. Ogachi HDR reservoir evaluation by AE and geophysical methods[C/OL]. [2015-03-31]. http://www. geothermal-energy.org/pdf/IGAstandard/WGC/2000/R0397.PDF.
[17] Moriya H, Niitsuma H, Baria R. Estimation of fine scale structures in Soultz HDR reservoir by using microseismicmultiplets[C/OL]. [2015-03-31]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.495. 7329&rep=rep1&type=pdf.
[18] Baria R, Baumgärtner J, Gérard A, et al. European hot dry rock geothermal research programme 1996-1997[J]. European Commission Final Report (DGXII) EUR15925ER, 1999.
[19] Cuenot N, Dorbath L, Frogneux M, et al. Microseismic activity induced under circulation conditions at the EGS Project of Soultz-sous-Forêts (France)[C/OL]. [2015-03-31]. http://www.geothermal-energy.org/pdf/ IGAstandard/WGC/2010/3148.pdf.
[20] BRGM. Deep geothermal energy: The Soultz-sous-Forêts site has reached the sustainable production phase[EB/OL]. [2015-03-31]. http: //www.brgm.eu/projects/deep-geothermal-energy-the-soultz-sousforets-site-has-reached-the-sustainable-production.
[21] Schill E, Cuenot N, Genter A, et al. Review of the hydraulic development in the multi-reservoir/multi-well EGS project of Soultzsous-Forêts[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[22] Van RuthP, Hillis R, SwarbrickR, et al. The origin of overpressure in the Cooper Basin[C]//ASEG 16th Geophysical Conference and Exhibition. Adelaide, 2003.
[23] Quigley M C, Clark D, Sandiford M. Tectonic geomorphology of Australia[J]. Geological Society, 2010, 346(1): 243-265.
[24] Llanos E M, Zarrouk S J, Hogarth R A. Simulation of the habanero enhanced geothermal system (EGS)[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[25] McMahon A, Baisch S. Seismicity associated with the stimulation of the Enhanced Geothermal System at Habanero[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[26] 李福. 海南岛深层干热岩地热发电选址[C]//中国地热能:成就与展望 ——李四光倡导中国地热能开发利用40周年纪念大会暨中国地热 发展研讨会论文集. 北京: 中国能源研究会地热专业委员会, 2010. LiFu. Site selection of deep hot-dry rock geothermal power station in Hainan Province[C]//Chinese Geothermal Energy: Achievements And Prospects – Proceeding Of The 40th Anniversary Conference Of Li Siguang's Advocacy Of China's Geothermal Energy Development And Utilization. Beijing: China Energy Research Society of geothermal Professional Committee, 2010.
[27] 曾梅香, 李俊, 郑克桢, 等. 天津地区干热岩地热资源开发利用前景 浅析[C]//中国地热资源开发与保护——全国地热资源开发利用与 保护考察研讨会论文集. 北京: 中国能源研究会地热专业委员会, 2007. Zeng Meixiang, Li Jun, Zheng Kezhen,et al. Preliminary assessment of the developments of hot-dry rock geothermal resources in Tianjin[C]//Developments and conservation of geothermal resources in China, Proceeding of conference of developments and conservation of geothermal resources in China. Beijing: China Energy Research Society of geothermal Professional Committee, 2007.
[28] 徐立. 江苏地区地热资源综合利用研究[D]. 南京: 南京大学, 2014. Xu Li. Studies on multi-purpose utilizations of eothermal energy in Jiangso Province[D]. Nanjing: Nanjing University, 2014.
[29] 孙知新, 李百祥, 王志林. 青海共和盆地存在干热岩可能性探讨[J]. 水文地质工程地质, 2011, 38(2): 119-124. Sun Zhixin, Li Baixiang, Wang Zhilin. Exploration of the possibility of hot dry rock occurring in the Qinghai Gonghe Basin[J]. Hydrogeology & Engineering Geology, 2011, 38(2): 119-124.
[30] CAGS. The first scientific drilling project for hot dry rock launched in China[EB/OL].[2015-03-31]. http://en.cags.ac.cn/News/9794.htm.
[31] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 33(5): 5-31.
[32] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进 展[J]. 科技导报, 2012, 30(32): 42-45. Xu Tianfu, Zhang Yanjun, Zeng Zhaofa, et al. Technology progress in an enhanced geothermal system (hot dry rock) [J].Science & Technology Revies, 2012, 30(32): 42-45.
[33] 中国地质科学院水文地质环境地质研究所. 我国第一口干热岩 科学钻探孔正式开钻[EB/OL]. [2015-05-22]. http://www.iheg.org.cn/ content-485-2941.html.
[34] Sherburn S, Sewell S, Bannister S, et al. Microseismicity at Rotokawa geothermal field, New Zealand, 2008-2012[J]. Geothermics, 2015, 54: 23-34.
[35] Bannister S, Sherburn S, Powell T, et al. Microearthquakes at the Rotokawa geothermal field, New Zealand[J]. GRC Trans, 2008, 32: 259-264.
[36] Foulger G. Geothermal exploration and reservoir monitoring using earthquakes and the passive seismic method[J]. Geothermics, 1982, 11 (4):259-268.
[37] Luschen E, von Hartmann H, Thomas R, et al. 3D seismic survey for a petrothermal (egs) research project in crystalline rocks of Saxony, Germany[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[38] 多吉. 典型高温地热系统——羊八井热田基本特征[J]. 中国工程科 学, 2003, 5(1): 42-47. Duo Ji. A typical Temperature geothermal system[J]. China Engineering Sciences, 2003, 5(1): 42-47.
[39] Volpi G, Manzella A, Fiordelisi A. Investigation of geothermal structures by magnetotellurics (MT): An example from the Mt. Amiata area, Italy[J]. Geothermics, 2003, 32(2): 131-145.
[40] Oskooi B, Manzella A. 2D inversion of the Magnetotelluric data from Travale Geothermal Field in Italy[J]. Journal of the Earth & Space Physics, 2011, 36(4): 1-18.
[41] Schwarz G, Haak V, Rath V. Electrical conductivity studies in the Travale geothermal field, Italy[J]. Geothermics, 1985, 14(5): 653-661.
[42] Karastathis V K, Papoulia J, Di Fiore B, et al. Deep structure investigations of the geothermal field of the North Euboean Gulf,Greece, using 3-D local earthquake tomography and Curie Point Depth analysis[J]. Journal of Volcanology and Geothermal Research, 2011, 206(3): 106-120..
[43] 丁仲礼. 固体地球科学研究方法[M]. 北京: 科学出版社, 2013. Ding Zhongli. Research methodology of solid earth[M]. Beijing: Science Press, 2013.
[44] Geddes C J, Curlett H B. Leveraging a new energy source to enhance heavyoil and oilsands production[C]//SPE International Thermal Operations and Heavy Oil Symposium. Society of Petroleum Engineers, 2005.
[45] Polizzotti R S, Hirsch L, Herhold A B, et al. Hydrothermal drilling method and system: US Patent 6742603[P]. 2004-06-01.
[46] Schill E, Cuenot N, Genter A, et al. Review of the hydraulic development in the multi-reservoir/multi-well EGS project of Soultzsous-Forêts[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[47] Jung R, Rumhydraulic mel F, Jupe A, et al. Large-scale hydraulic injections in the granitic basement in the European HDR programme at Soultz, France[C]//3rd Int. Hot Dry Rock Forum. Santa Fe, NM, 1996.
[48] Jung H B, Shao H, Heldebrant D J, et al. Stimuli-responsive/ rheoreversible hydraulic fracturing fluids for enhanced geothermal systems[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[49] Grubelich M C, King D, Knudsen S, et al. An overview of a high energy stimulation technique for geothermal applications[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[50] Calò M, Dorbath C. Different behaviours of the seismic velocity field at Soultz-sous-Forêts revealed by 4-D seismic tomography: Case study of GPK3 and GPK2 injection tests[J]. Geophysical Journal International, 2013, 194(2): 1119-1137.
[52] Maurer V, Cuenot N, Gaucher E, et al. Seismic Monitoring of the Rittershoffen EGS Project (Alsace, France) [C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[53] anjuan B, Pinault J L, Rose P, et al. Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005[J]. Geothermics, 2006, 35(5): 622-653.
[54] Rose P E, Capuno V, Peh A, et al. The use of naphthalene sulfonates as tracers in high temperature geothermal systems[C]//Proceedings of the 23rd Annual PNOC-EDC Geothermal Conference. 2002: 53-58.
[54] Rose P E, Johnson S D, Kilbourn P, et al. Tracer testing at Dixie Valley, Nevada using 1-naphthalene sulfonate and 2, 6-naphthalene disulfonate[C]// Proceedings, Twenty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2002: 28-30.
[55] Rose P E, Johnson S D, Kilbourn P, et al. Tracer testing at Dixie Valley, Nevada using 1-naphthalene sulfonate and 2, 6-naphthalene disulfonate[C]//Proceedings, Twenty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2002: 28-30.
[56] Pope E C, Bird D K, Arnórsson S. Stable isotopes of hydrothermal minerals as tracers for geothermal fluids in Iceland[J]. Geothermics, 2014, 49: 99-110.
[57] Dean C, Reimus P, Oates J, et al. Laboratory experiments to characterize cation-exchanging tracer behavior for fracture surface area estimation at Newberry Crater, OR[J]. Geothermics, 2015, 53: 213-224.
[58] AltaRock. Thermally-degradable zonal isolation materials (TZIMS)[EB/ OL]. [2015-06-30]. http://altarockenergy.com/technology/tzim/.
[59] Holl H, Barton C. Habanero field: Structure and state of stress[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[60] Remoroza A I, Moghtaderi B, Doroodchi E. Fluid-Rock interaction under reservoir conditions pertinent to hot dry rock-engineered geothermal systems[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[61] Gelet R, Loret B, Khalili N. A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity[J]. Journal of Geophysical Research, 2012, 117: 1-23.
[62] Ghassemi A, Zhou X. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems[J]. Geothermics, 2011, 40(1): 39-49.
[63] Rutqvist J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations[J]. Computers & Geosciences, 2011, 37(6): 739-750.
[64] Brown D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]//Proceedings of the twenty-fifth workshop on geothermal reservoir engineering. Stanford University. 2000: 233-238.
[65] Pruess K. Enhanced geothermal systems (EGS) using CO2 as working fluid-a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4): 351-367.
[66] Friðleifsson G Ó, Elders W A, Albertsson A. The concept of the Iceland deep drilling project[J]. Geothermics, 2014, 49: 2-8.
[67] Einarsson Ó P, Johannesson T, Albertsson A, et al. 1 IDDP-2 well head equipment and test setup[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.
[68] Shnell J, Hiriart G, Nichols K, et al. Energy from ocean floor geothermal resources[C]. Proceedings World Geothermal Congress 2015, Melbourne, Australia, April 19-25, 2015.