Special Issues

Advances of technologies and research in plant metabolomics

  • LIU Xianqing ,
  • LUO Jie
Expand
  • College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

Received date: 2014-11-15

  Revised date: 2015-07-23

  Online published: 2015-08-28

Abstract

Metabolomics is an emerging omics technology after genomics and proteomics and it tends to qualify and quantify all metabolites of small molecular weight in an organism of cells. Plant metabolites are extremely diverse in terms of their classes, content, and functions, and plant metabolomics therefore is an important part of metabolomics. Plant metabolites are the readouts of physiological status of a plant, and the investigation of the change and regulation of plant metabolites as a whole will lay a foundation for the dissection of plants' growth, development and their interactions with the environments. Plant metabolomics has been widely applied in investigating the accumulation pattern of metabolites and the underlying genetic basis, the identification of genes involved in metabolism, and is one of the hotspots in modern plant biology. In this review, we summarize current development of the technical platforms in plant metabolomics, as well as its applications in plant biology.

Cite this article

LIU Xianqing , LUO Jie . Advances of technologies and research in plant metabolomics[J]. Science & Technology Review, 2015 , 33(16) : 33 -38 . DOI: 10.3981/j.issn.1000-7857.2015.16.004

References

[1] Nicholson J K, Lindon J C, Holmes E. Metabonomics: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11): 1181-1189.
[2] Fiehn O, Kopka J, Dormann P, et al. Metabolite profiling for plant functional genomics[J]. Nature Biotechnology, 2000, 18(11): 1157-1161.
[3] Taylor J, King R D, Altmann T, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning[J]. Bioinformatics, 2002, 18(Suppl 2): 241-248.
[4] Dixon R A, Strack D. Phytochemistry meets genome analysis, and beyond[J]. Phytochemistry, 2003, 62(6): 815-816.
[5] Koch K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development[J]. Current Opinion in Plant Biology, 2004, 7(3): 235-246.
[6] Carreno-Quintero N, Bouwmeester H J, Keurentjes J J. Genetic analysis of metabolome-phenotype interactions: From model to crop species[J]. Trends in Genetics, 2013, 29(1): 41-50.
[7] Mitchell-Olds T, Schmitt J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis[J]. Nature, 2006, 441 (7096): 947-952.
[8] D'Auria J C, Gershenzon J. The secondary metabolism of Arabidopsis thaliana: Growing like a weed[J]. Current Opinion in Plant Biology, 2005, 8(3): 308-316.
[9] Sumner L W, Mendes P, Dixon R A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era[J]. Phytochemistry, 2003, 62(6): 817-836.
[10] Saito K, Matsuda F. Metabolomics for functional genomics, systems biology, and biotechnology[J]. Annual Review in Plant Biology, 2010, 61: 463-489.
[11] Zheng P, Allen W B, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize[J]. Nature Genetics, 2008, 40(3): 367-372.
[12] Keurentjes J J. Genetical metabolomics: Closing in on phenotypes[J]. Current Opinion in Plant Biology, 2009, 12(2): 223-230.
[13] Chen W, Gao Y, Xie W, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism[J]. Nature Genetics, 2014, 46(7): 714-721.
[14] Wen W, Li D, Li X, et al. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights[J]. Nature Communications, 2014, 5(3): 3438-3447.
[15] Keurentjes J J, Fu J, de Vos C H, et al. The genetics of plant metabolism[J]. Nature Genetics, 2006, 38(7): 842-849.
[16] Chan E K F, Rowe H C, Corwin J A, et al. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana[J]. PLoS Biology, 2011, 9(8): e1001125.
[17] Li H, Peng Z, Yang X, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels[J]. Nature Genetics, 2013, 45(1): 43-50.
[18] Eisenreich W, Bacher A. Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry[J]. Phytochemistry, 2007, 68(22-24): 2799-2815.
[19] Ward J L, Baker J M, Beale M H. Recent applications of NMR spectroscopy in plant metabolomics[J]. FEBS Journal, 2007, 274(5): 1126-1131.
[20] Kim H K, Choi Y H, Verpoorte R. NMR-based metabolomic analysis of plants[J]. Nature Protocol, 2010, 5(3): 536-549.
[21] Lisec J, Schauer N, Kopka J, et al. Gas chromatography mass spectrometry-based metabolite profiling in plants[J]. Nature Protocol, 2006, 1(1): 387-396.
[22] Kusano M, Fukushima A, Arita M, et al. Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana[J]. BMC Systems Biology, 2007, 1: 53.
[23] Krone N, Hughes B A, Lavery G G, et al. Gas chromatography/mass spectrometry (GC/MS) remains a preeminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS) [J]. Journal of Steroid Biochemistry, 2010, 121(3-5): 496-504.
[24] De Vos R C H, Moco S, Lommen A, et al. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry[J]. Nature Protocol, 2007, 2(4): 778-791.
[25] Rochfort S J, Trenerry V C, Imsic M, et al. Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSn fragmentation[J]. Phytochemistry, 2008, 69(8): 1671-1679.
[26] Yonekura-Sakakibara K, Tohge T, Matsuda F, et al. Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis[J]. Plant Cell, 2008, 20(8): 2160-2176.
[27] Sawada Y, Akiyama K, Sakata A, et al. Widely-targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants[J]. Plant and Cell Physiology, 2009, 50 (1): 37-47.
[28] Chen W, Gong L, Guo Z, et al. A novel integrated method for largescale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics[J]. Molecular Plant, 2013, 6(6): 1769-1780.
[29] Yao M, Ma L, Humphreys W G, et al. Rapid screening and characterization of drug metabolites using a multiple ion monitoring-dependent MS/MS acquisition method on a hybrid triple quadrupole-linear ion trap mass spectrometer[J]. Journal of Mass Spectrometry, 2008, 43(10): 1364-1375.
[30] Monton M R N, Soga T. Metabolome analysis by capillary electrophoresis-mass spectrometry[J]. Journal of Chromatography A, 2007, 1168(1-2): 237-246.
[31] Levandi T, Leon C, Kaljurand M, et al. Capillary electrophoresis timeof-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize[J]. Analytical Chemistry, 2008, 80(16): 6329-6335.
[32] Ohkama-Ohtsu N, Oikawa A, Zhao P, et al. A gamma-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis[J]. Plant Physiology, 2008, 148(3): 1603-1613.
[33] Watanabe M, Kusano M, Oikawa A, et al. Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis[J]. Plant Physiology, 2008, 146(1): 310-320.
[34] Horai H, Arita M, Kanaya S, et al. MassBank: A public repository for sharing mass spectral data for life sciences[J]. Journal of Mass Spectrometry, 2010, 45(7): 703-714.
[35] Afendi F M, Okada T, Yamazaki M, et al. KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research[J]. Plant and Cell Physiology, 2012, 53(2): e1, doi: 10.1093/pcp/pcr165.
[36] Bais P, Moon-Quanbeck S M, Nikolau B J, et al. Plantmetabolomics. org: Mass spectrometry-based Arabidopsis metabolomics-database and tools update[J]. Nucleic Acids Research, 2012, 40(D1): D1216-D1220.
[37] Tautenhahn R, Cho K, Uritboonthai W, et al. An accelerated workflow for untargeted metabolomics using the METLIN database[J]. Nature Biotechnology, 2012, 30(9): 826-828.
[38] Kopka J, Schauer N, Krueger S, et al. GMD@CSB.DB: The golm metabolome database[J]. Bioinformatics, 2005, 21(8): 1635-1638.
[39] Sawada Y, Nakabayashi R, Yamada Y, et al. RIKEN tandem mass spectral database (ReSpect) for phytochemicals: A plant-specific MS/MS-based data resource and database[J]. Phytochemistry, 2012, 82(1): 38-45.
[40] Neuweger H, Albaum S P, Dondrup M, et al. MeltDB: A software platform for the analysis and integration of metabolomics experiment data[J]. Bioinformatics, 2008, 24(23): 2726-2732.
[41] Cui Q, Lewis I A, Hegeman A D, et al. Metabolite identification via the Madison metabolomics consortium database[J]. Nature Biotechnology, 2008, 26(2): 162-164.
[42] Krumsiek J, Suhre K, Evans A M, et al. Mining the unknown: A systems approach to metabolite identification combining genetic and metabolic information[J]. PLoS Genetics, 2012, 8(10): e1003005.
[43] Luo J, Butelli E, Hill L, et al. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: Expression in fruit results in very high levels of both types of polyphenol[J]. Plant Journal, 2008, 56(2): 316-326.
[44] Dong X, Chen W, Wang W, et al. Comprehensive profiling and natural variation of flavonoids in rice[J]. Journal of Integrative Plant Biology, 2014, 56(9): 876-886.
[45] Luo J, Fuell C, Parr A, et al. A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed[J]. Plant Cell, 2009, 21(1): 318-333.
[46] Dong X, Gao Y, Chen W, et al. Spatio-temporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice[J]. Molecular Plant, 2015, 8(1): doi: 10.1093/mp/ssu101.
[47] Chan E K F, Rowe H C, Kliebenstein D J. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping[J]. Genetics, 2010, 185(3): 991-1007.
[48] Chan E K, Rowe H C, Hansen B G, et al. The complex genetic architecture of the metabolome[J]. PLoS Genetics, 2010, 6(11): e1001198.
[49] Bowne J B, Erwin T A, Juttner J, et al. Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level[J]. Molecular Plant, 2012, 5(2): 418-429.
[50] Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature: Joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation[J]. Plant and Cell Physiology, 2010, 51(9): 1599-1599.
[51] Rangan P, Subramani R, Kumar R, et al. Recent advances in polyamine metabolism and abiotic stress tolerance[J]. BioMed Research International, 2014, doi:10.1155/2014/239621.
[52] Shi H T, Chan Z L. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway[J]. Journal of Integrative Plant Biology, 2014, 56(2): 114-121.
[53] Kovacs Z, Simon-Sarkadi L, Szucs A, et al. Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat[J]. Amino Acids, 2010, 38(2): 623-631.
[54] Alcazar R, Cuevas J C, Planas J, et al. Integration of polyamines in the cold acclimation response[J]. Plant Science, 2011, 180(1): 31-38.
[55] Rowe H C, Hansen B G, Halkier B A, et al. Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome[J]. Plant Cell, 2008, 20(5): 1199-1216.
[56] Carreno-Quintero N, Acharjee A, Maliepaard C, et al. Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality[J]. Plant Physiology, 2012, 158(3): 1306-1318.
[57] Schauer N, Semel Y, Roessner U, et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement[J]. Nature Biotechnology, 2006, 24(4): 447-454.
[58] Matsuda F, Nakabayashi R, Yang Z, et al. Metabolome-genome-wide association study (mGWAS) dissects genetic architecture for generating natural variation in rice secondary metabolism[J]. Plant Journal, 2014, doi: 10.1111/tpj.12681.
[59] Routaboul J-M, Dubos C, Beck G, et al. Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis[J]. Journal of Experimental Botany, 2012, 63(10): 3749-3764.
[60] Toubiana D, Semel Y, Tohge T, et al. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations[J]. PLoS Genetics, 2012, 8(3): e1002612.
[61] Riedelsheimer C, Lisec J, Czedik-Eysenberg A, et al. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize[J]. PNAS, 2012, 109(23): 8872-8877.
[62] Gong L, Chen W, Gao Y, et al. Genetic analysis of the metabolome exemplified using a rice population[J]. PNAS, 2013, 110(50): 20320-20325.
[63] Huang X, Han B. Natural variations and genome-wide association studies in crop plants[J]. Annual Review of Plant Biology, 2014, 65: 531-551.
[64] Huang X, Zhao Y, Wei X, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm[J]. Nature Genetics, 2012, 44(1): 32-39.
[65] Miyahara T, Sakiyama R, Ozeki Y, et al. Acyl-glucose-dependent glucosyltransferase catalyzes the final step of anthocyanin formation in Arabidopsis[J]. Journal of Plant Physiology, 2013, 170(6): 619-624.
[66] Kitamura S, Matsuda F, Tohge T, et al. Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants[J]. Plant Journal, 2010, 62(4): 549-559.
[67] Kusano M, Fukushima A, Redestig H, et al. Metabolomic approaches toward understanding nitrogen metabolism in plants[J]. Journal of Experimental Botany, 2011, 62(4): 1439-1453.
[68] Winzer T, Gazda V, He Z, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine[J]. Science, 2012, 336(6089): 1704-1708.
[69] Geu-Flores F, Sherden N H, Courdavault V, et al. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis[J]. Nature, 2012, 492(7427): 138-142.
Outlines

/