Reviews

Progress on research and application of extreme wettability surfaces

  • SONG Jinlong ,
  • LU Yao ,
  • HUANG Shuai ,
  • LIU Xin ,
  • XU Wenji
Expand
  • 1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China;
    2. Materials Chemistry Research Centre, Department of Chemistry, University College London, London WC1H 0AJ, UK

Received date: 2014-12-23

  Revised date: 2015-05-14

  Online published: 2015-08-28

Abstract

Based on the related theories of extreme wettability surface, the fabrication methods of the extreme wettability surface are reviewed, analyzed and summarized. The application of the extreme wettability surface to self-cleaning, anti-fogging, anti-icing and-frosting, corrosion resistance, response switch, oil/water separation, water equipment with high loading force, no loss transport of liquid, directional transport of liquid, and materials with blood compatibility is discussed The problems needed to be resolved for real industrial applications of the extreme wettability surface are pointed out. Fabrication of superamphiphobic surface with good mechanical property and high bearing capacity of static/dynamic pressure is the main trend.

Cite this article

SONG Jinlong , LU Yao , HUANG Shuai , LIU Xin , XU Wenji . Progress on research and application of extreme wettability surfaces[J]. Science & Technology Review, 2015 , 33(15) : 92 -100 . DOI: 10.3981/j.issn.1000-7857.2015.15.015

References

[1] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87.
[2] Wenzel R N. Resistance of sold surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
[3] Wenzel R N. Surface roughness and contact angle[J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9): 1466-1467.
[4] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
[5] Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15(13): 4321-4323.
[6] Su C H, Xu Y Q, Gong F, et al. The abrasion resistance of a superhydrophobic surface comprised of polyurethane elastomer[J]. Soft Mater, 2010, 6(24): 6068-6071.
[7] Checco A, Rahman A, Black C T. Robust superhydrophobicity in large- Area nanostructured surfaces defined by block-copolymer self assembly [J]. Advanced Materials, 2014, 26(6): 886-891.
[8] Yong J L, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. The Journal of Physical Chemistry C, 2013, 117(47): 24907-24912.
[9] Zhang Z X, Li Y A, Ye M, et al. Fabrication of superhydrophobic surface by a laminating exfoliation method[J]. Journal of Materials Chemistry A, 2014, 2(5): 1268-1271.
[10] Jiang T, Koch J, Unger C, et al. Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces[J]. Applied Physics A- Materials Science & Processing, 2012, 108(4): 863-869.
[11] Xu W J, Song J L, Sun J, et al. Fabrication of superhydrophobic surfaces on aluminum substrates using NaNO3 electrolytes[J]. Journal of Materials Science, 2011, 46(18): 5925-5930.
[12] Wu W C, Wang X L, Wang D A, et al. Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids[J]. Chemical Communications, 2009(9): 1043-1045.
[13] Liu Y, Yin X M, Zhang J J, et al. A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochimica Acta, 2014, 125: 395-403.
[14] Liang J S, Li D, Wang D Z, et al. Preparation of stable superhydrophobic film on stainless steel substrate by a combined approach using electrodeposition and fluorinated modification[J]. Applied Surface Science, 2014, 293: 265-270.
[15] Liu L J, Feng X R, Guo M X. Eco-friendly fabrication of superhydrophobic bayerite array on Al foil via an etching and growth process[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25519-25525.
[16] Ou J F, Hu W H, Liu S, et al. Superoleophobic textured copper surfaces fabricated by chemical etching/oxidation and surface fluorination[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10035-10041.
[17] Yang J, Li W. Preparation of superhydrophobic surfaces on Al substrates and the anti- icing behavior[J]. Journal of Alloys and Compounds, 2013, 576: 215-219.
[18] Zang D Y, Li F, Geng X G, et al. Tuning the wettability of an aluminum surface via a chemically deposited fractal dendrite structure [J]. The European Physical Journal E, 2013, 36(6): 1-8.
[19] Yohe S T, Grinstaff M W. A facile approach to robust superhydrophobic 3D coatings via connective-particle formation using the electrospraying process[J]. Chemical Communications, 2013, 49(8): 804-806.
[20] Xu X H, Zhang Z Z, Guo F, et al. Fabrication of bionic superhydrophobic manganese oxide/polystyrene nanocomposite coating[J]. Journal of Bionic Engineering, 2012, 9(1): 11-17.
[21] Rao A V, Latthe S S, Mahadik S A, et al. Mechanically stable and corrosion resistant superhydrophobic sol- gel coatings on copper substrate[J]. Applied Surface Science, 2011, 257(13): 5772-5776.
[22] Schutzius T M, Tiwari M K, Bayer I S, et al. High strain sustaining, nitrile rubber based, large- area, superhydrophobic, nanostructured composite coatings[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(8): 979-985.
[23] Das A, Schutzius T M, Bayer I S, et al. Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films[J]. Carbon, 2012, 50 (3): 1346-1354.
[24] Tiwari M K, Bayer I S, Jursich G M, et al. Highly liquid-repellent, large- area, nanostructured poly(vinylidene fluoride)/poly(ethyl 2- cyanoacrylate) composite coatings: particle filler effects[J]. ACS Applied Materials & Interfaces, 2010, 2(4): 1114-1119.
[25] Schutzius T M, Bayer I S, Tiwari M K, et al. Novel fluoropolymer blends for the fabrication of sprayable multifunctional superhydrophobic nanostructured composites[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11117-11123.
[26] Das A, Hayvaci H T, Tiwari M K, et al. Superhydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding[J]. Journal of Colloid and Interface Science, 2011, 353(1): 311-315.
[27] Ye J M, Yin Q M, Zhou Y L. Superhydrophilicity of anodic aluminum oxide films: From“honeycomb”to“bird's nest”[J]. Thin Solid Films, 2009, 517(21): 6012-6015.
[28] Song J L, Xu W J, Liu X, et al. Electrochemical machining of superhydrophobic Al surfaces and effect of processing parameters on wettability[J]. Applied Physics A, 2012, 108(3): 559-568.
[29] Sun R D, Nakajima A, Fujishima A, et al. Photoinduced surface wettability conversion of ZnO and TiO2 thin films[J]. The Journal of Physical Chemistry B, 2001, 105(10): 1984-1990.
[30] Fujishima A, Zhang X T, Tryk D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12): 515- 582.
[31] Bae W G, Song K Y, Rahmawan Y, et al. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining[J]. ACS Applied Materials & Interfaces, 2012, 4(7): 3685- 3691.
[32] Kam D H, Bhattacharya S, Mazumder J. Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification[J]. Journal of Micromechanics and Microengineering, 2012, 22(10): 105019.
[33] La D D, Nguyen T A, Lee S H, et al. A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays [J]. Applied Surface Science, 2011, 257(13): 5705-5710.
[34] Tasaltin N, Sanli D, Jonáš A, et al. Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane- modified nanoporous alumina[J]. Nanoscale Research Letters, 2011, 6(1): 1-8.
[35] Huang S Y, Hu Y W, Pan W. Relationship between the structure and hydrophobic performance of Ni- TiO2 nanocomposite coatings by electrodeposition[J]. Surface and Coatings Technology, 2011, 205(13/ 14): 3872-3876.
[36] Qian B T, Shen Z Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21(20): 9007-9009.
[37] 李艳峰, 于志家, 于跃飞, 等. 铝合金基体上超疏水表面的制备[J]. 高 校化学工程学报, 2008(1): 6-10. Li Yanfeng, Yu Zhijia, Yu Yuefei, et al. Fabrication of superhydrophobic surfaces on aluminum alloy[J]. Journal of Chemical Engineering of Chinese Universities, 2008(1): 6-10.
[38] Jia J, Fan J F, Xu B S, et al. Microstructure and properties of the super-hydrophobic films fabricated on magnesium alloys[J]. Journal of Alloys and Compounds, 2013, 554: 142-146.
[39] Xu L P, Wu X W, Meng J X, et al. Papilla-like magnetic particles with hierarchical structure for oil removal from water[J]. Chemical Communications, 2013, 49(78): 8752-8754.
[40] Lu Y, Sathasivam S, Song J L, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347 (6226): 1132-1135.
[41] Deng X, Mammen L, Butt H J, et al. Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 2012, 335 (6064): 67-70.
[42] Choi G R, Park J, Ha J W, et al. Superamphiphobic web of PTFEMA fibers via simple electrospinning without functionalization[J]. Macromolecular Materials and Engineering, 2010, 295(11): 995-1002.
[43] Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir, 2005, 21(3): 956-961.
[44] Wang H, Tang L M, Wu X M, et al. Fabrication and anti-frosting performance of super hydrophobic coating based on modified nanosized calcium carbonate and ordinary polyacrylate[J]. Applied Surface Science, 2007, 253(22): 8818-8824.
[45] Wang G Y, Liang W X, Wang B, et al. Conductive and transparent superhydrophobic films on various substrates by in situ deposition[J]. Applied Physics Letters, 2013, 102(20): 203703.
[46] Ebert D, Bhushan B. Transparent, Superhydrophobic, and wear-Resistant coatings on Glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles[J]. Langmuir, 2012, 28(31): 11391-11399.
[47] Chen Y, Zhang Y B, Shi L, et al. Transparent superhydrophobic/ superhydrophilic coatings for self- cleaning and anti- fogging[J]. Applied Physics Letters, 2012, 101(3): 033701.
[48] Xu L B, Karunakaran R G, Guo J, et al. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 1118-1125.
[49] 郑建勇, 钟明强, 冯杰. 基于超亲水原理的自清洁表面研究进展及产 业化状况[J]. 材料导报, 2009, 27(增1): 42-44. Zheng Jianyong, Zhong Mingqiang, Feng Jie. Research progress and industrial manufacture status of superhydrophilic self-cleaning surfaces [J]. Materials Review, 2009, 27(Suppl 1):42-44.
[50] 封玉凤, 王利新. 自清洁防雾玻璃的研究进展[J]. 玻璃与搪瓷, 2013 (1): 39-42. Feng Yufeng, Wang Lixin. Progress on the self- cleaning and antifogging glass[J]. Glass & Enamel, 2013(1): 39-42.
[51] Cheng Y T, Rodak D E. Is the lotus leaf superhydrophobic?[J]. Applied Physics Letters, 2005, 86(14): 144101.
[52] Gao X F, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2007, 19(17): 2213-2217.
[53] 徐文骥, 宋金龙, 孙晶, 等. 铝基体超疏水表面的抗结冰结霜效果分 析[J]. 低温工程, 2010(6): 11-15. Xu Wenji, Song Jinlong, Sun Jing, et al. Research in ice and frost repellency of superhydrophobic surfaces on aluminum[J]. Cryogenics, 2010(6):11-15.
[54] Tourkine P, Le Merrer M, Quéré D. Delayed freezing on water repellent materials[J]. Langmuir, 2009, 25(13): 7214-7216.
[55] Kulinich S A, Farzaneh M. Ice adhesion on super- hydrophobic surfaces[J]. Applied Surface Science, 2009, 255(18): 8153-8157.
[56] Boreyko J B, Srijanto B R, Nguyen T D, et al. Dynamic defrosting on nanostructured superhydrophobic surfaces[J]. Langmuir, 2013, 29(30): 9516-9524.
[57] 杨洋, 李剑, 胡建林, 等. 绝缘子的超疏水涂层覆冰特性试验研究[J]. 高电压技术, 2010(3): 621-626. Yang Yang, Li Jian, Hu Jianlin, et al. Experimental study in icing properties of superhydrophobic coatings on insulators[J]. High Voltage Engineering, 2010(3): 621-626.
[58] Zang D M, Zhu R W, Wu C X, et al. Fabrication of stable superhydrophobic surface with improved anticorrosion property on magnesium alloy[J]. Scripta Materialia, 2013, 69(8): 614-617.
[59] Xu W J, Song J L, Sun J, et al. Rapid fabrication of large- area, corrosion-resistant superhydrophobic Mg alloy surfaces[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4404-4414.
[60] Yu D Y, Tian J T, Dai J H, et al. Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater[J]. Electrochimica Acta, 2013, 97: 409-419.
[61] Boinovich L B, Gnedenkov S V, Alpysbaeva D A, et al. Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers[J]. Corrosion Science, 2012, 55: 238-245.
[62] Wang P, Zhang D, Qiu R, et al. Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium[J]. Corrosion Science, 2014, 83: 317-326.
[63] Zang D M, Zhu R W, Zhang W, et al. Stearic acid modified aluminum surfaces with controlled wetting properties and corrosion resistance[J]. Corrosion Science, 2014, 83: 86-93.
[64] Ou J F, Liu M Z, Li W, et al. Corrosion behavior of superhydrophobic surfaces of Ti alloys in NaCl solutions[J]. Applied Surface Science, 2012, 258(10): 4724-4728.
[65] Accardo A, Gentile F, Coluccio M L, et al. A combined electrowetting on dielectrics superhydrophobic platform based on silicon microstructured pillars[J]. Microelectronic Engineering, 2012, 98: 651-654.
[66] Lim H S, Kwak D, Lee D Y, et al. UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity[J]. Journal of the American Chemical Society, 2007, 129(14): 4128-4129.
[67] Cheng M J, Liu Q, Ju G N, et al. Bell-shaped superhydrophilic – superhydrophobic- superhydrophilic double transformation on a pHresponsive smart surface[J]. Advanced Materials, 2014, 26(2): 306- 310.
[68] Xiao M, Guo X P, Cheng M J, et al. pH-responsive on-off motion of a superhydrophobic boat: towards the design of a minirobot[J]. Small, 2014, 10(5): 859-865.
[69] Chen H, Pan S J, Xiong Y Z, et al. Preparation of thermo-responsive superhydrophobic TiO2/poly(N- isopropylacrylamide) microspheres[J]. Applied Surface Science, 2012, 258(24): 9505-9509.
[70] Zhang J L, Lu X Y, Huang W H, et al. Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polvamide film[J]. Macromolecular Rapid Communications, 2005, 26 (6): 477-480.
[71] Lin J Y, Ding B, Yang J M, et al. Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption[J]. Nanoscale, 2012, 4(1): 176-182.
[72] Lin J Y, Tian F, Shang Y W, et al. Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption[J]. Nanoscale, 2012, 4(17): 5316-5320.
[73] Wu J, Wang N, Wang L, et al. Electrospun porous structure fibrous film with high oil adsorption capacity[J]. ACS Applied Materials & Interfaces, 2012, 4(6): 3207-3212.
[74] Zhu H T, Qiu S S, Jiang W, et al. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup[J]. Environmental Science & Technology, 2011, 45(10): 4527-4531.
[75] Calcagnile P, Fragouli D, Bayer I S, et al. Magnetically driven floating foams for the removal of oil contaminants from water[J]. ACS Nano, 2012, 6(6): 5413-5419.
[76] Chen N, Pan Q M. Versatile fabrication of ultralight magnetic foams and application for oil- water separation[J]. ACS Nano, 2013, 7(8): 6875-6883.
[77] Nagappan S, Park J J, Park S S, et al. Bio-inspired, multi-purpose and instant superhydrophobic-superoleophilic lotus leaf powder hybrid micro- nanocomposites for selective oil spill capture[J]. Journal of Materials Chemistry A, 2013, 1(23): 6761-6769.
[78] Sarkar A, Mahapatra S. Novel hydrophobic vaterite particles for oil removal and recovery[J]. Journal of Materials Chemistry A, 2014, 2 (11): 3808-3818.
[79] Wang B, Li J, Wang G Y, et al. Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation[J]. ACS Applied Materials & Interfaces, 2013, 5(5): 1827-1839.
[80] Zhou X Y, Zhang Z Z, Xu X H, et al. Facile fabrication of superhydrophobic sponge with selective absorption and collection of oil from water[J]. Industrial & Engineering Chemistry Research, 2013, 52(27): 9411-9416.
[81] Zhu Q, Chu Y, Wang Z K, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil- absorption material[J]. Journal of Materials Chemistry A, 2013, 1(17): 5386-5393.
[82] Zhu Q, Pan Q M. Mussel-inspired direct immobilization of nanoparticles and application for oil- water separation[J]. ACS Nano, 2014, 8(2): 1402-1409.
[83] Zhu Q, Pan Q M, Liu F T. Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges [J]. The Journal of Physical Chemistry C, 2011, 115(35): 17464-17470.
[84] Cheng M, Gao Y F, Guo X P, et al. A Functionally integrated device for effective and facile oil spill cleanup[J]. Langmuir, 2011, 27(12): 7371-7375.
[85] Cheng M J, Ju G N, Jiang C, et al. Magnetically directed clean-up of underwater oil spills through a functionally integrated device[J]. Journal of Materials Chemistry A, 2013, 1(43): 13411-13416.
[86] Wang S H, Li M, Lu Q H. Filter paper with selective absorption and aeparation of liquids that differ in surface tension[J]. ACS Applied Materials & Interfaces, 2010, 2(3): 677-683.
[87] Dong X C, Chen J, Ma Y W, et al. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chemical Communications, 2012, 48(86): 10660-10662.
[88] Gui X C, Zeng Z P, Lin Z Q, et al. Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation [J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5845-5850.
[89] Cervin N, Aulin C, Larsson P, et al. Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids[J]. Cellulose, 2012, 19(2): 401-410.
[90] Tang Y, Yeo K L, Chen Y, et al. Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties[J]. Journal of Materials Chemistry A, 2013, 1(23): 6723-6726.
[91] Hayase G, Kanamori K, Fukuchi M, et al. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water[J]. Angewandte Chemie International Edition, 2013, 52(7): 1986-1989.
[92] Feng L, Zhang Z Y, Mai Z H, et al. A Super-hydrophobic and superoleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie International Edition, 2004, 43(15): 2012-2014.
[93] Xue Z X, Wang S T, Lin L, et al. A novel superhydrophilic and underwater superoleophobic hydrogel- coated mesh for oil/water separation[J]. Advanced Materials, 2011, 23(37): 4270-4273.
[94] Liang W X, Guo Z G. Stable superhydrophobic and superoleophilic soft porous materials for oil/water separation[J]. RSC Advances, 2013, 3(37): 16469-16474.
[95] Kota A K, Kwon G, Choi W, et al. Hygro-responsive membranes for effective oil- water separation[J]. Nature Communication, 2012, 3: 1025.
[96] Zhang W B, Shi Z, Zhang F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25(14): 2071-2076.
[97] Zhang W B, Zhu Y Z, Liu X, et al. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions[J]. Angewandte Chemie International Edition, 2014, 53(3): 856-860.
[98] Zhang F, Zhang W B, Shi Z, et al. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation[J]. Advanced Materials, 2013, 25(30): 4192-4198.
[99] Tao M M, Xue L X, Liu F, et al. An Intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation[J]. Advanced Materials, 2014, 26(18): 2943-2948.
[100] Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.
[101] Feng X Q, Gao X F, Wu Z N, et al. Superior water repellency of water strider legs with hierarchical structures: Experiments and analysis[J]. Langmuir, 2007, 23(9): 4892-4896.
[102] Pan Q M, Liu J, Zhu Q. A Water strider-like model with large and stable loading capacity fabricated from superhydrophobic copper foils [J]. ACS Applied Materials & Interfaces, 2010, 2(7): 2026-2030.
[103] Lu Y, Song J L, Liu X, et al. Loading capacity of a self-assembled superhydrophobic boat array fabricated via electrochemical method [J]. Micro & Nano Letters, 2012, 7(8): 786-789.
[104] Autumn K, Sitti M, Liang Y A, et al. Evidence for van der Waals adhesion in gecko setae[J]. Proceedings of the National Academy of Sciences, 2002, 99 (19): 12252-12256.
[105] Li J, Liu X H, Ye Y P, et al. Gecko-inspired synthesis of superhydrophobic ZnO surfaces with high water adhesion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384 (1-3): 109-114.
[106] 姚佳, 王剑楠, 于颜豪, 等. 仿生水稻叶表面制备及其润湿性研究 [J]. 科学通报, 2012(15): 1362-1366. Yao Jia, Wang Jiannan, Yu Yanhao, et al. Biomimetic fabrication and characterization of an artificical rice leaf surface with anisotropic wetting[J]. Chinese Science Bulletin, 2012, 57(15): 1362-1366.
[107] Xu Q F, Wang J N, Smith I H, et al. Directing the transportation of a water droplet on a patterned superhydrophobic surface[J]. Applied Physics Letters, 2008, 93(23):233112.
[108] Mertaniemi H, Jokinen V, Sainiemi L, et al. Superhydrophobic tracks for low- friction, guided transport of water droplets[J]. Advanced Materials, 2011, 23(26): 2911-2914.
[109] Kang S M, Lee C, Kim H N, et al. Directional oil sliding surfaces with hierarchical anisotropic groove microstructures[J]. Advanced Materials, 2013, 25(40): 5756-5761.
[110] Ghosh A, Ganguly R, Schutzius T M, et al. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms[J]. Lab on a Chip, 2014, 14(9): 1538-1550.
[111] Sun T L, Tan H, Han D, et al. No platelet can adhere-largely improved blood compatibility on nanostructured superhydrophobic surfaces[J]. Small, 2005, 1(10): 959-963.
[112] Lee S M, Song J H, Jung P G, et al. Nanotextured superhydrophobic micromesh[J]. Sensors and Actuators A: Physical, 2011, 171(2): 233- 240.
[113] Shi F, Niu J, Liu J, et al. Towards understanding why a superhydrophobic coating is needed by water striders[J]. Advanced Materials, 2007, 19 (17): 2257-2261.
Outlines

/