[1] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87.
[2] Wenzel R N. Resistance of sold surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
[3] Wenzel R N. Surface roughness and contact angle[J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9): 1466-1467.
[4] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
[5] Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999, 15(13): 4321-4323.
[6] Su C H, Xu Y Q, Gong F, et al. The abrasion resistance of a superhydrophobic surface comprised of polyurethane elastomer[J]. Soft Mater, 2010, 6(24): 6068-6071.
[7] Checco A, Rahman A, Black C T. Robust superhydrophobicity in large- Area nanostructured surfaces defined by block-copolymer self assembly [J]. Advanced Materials, 2014, 26(6): 886-891.
[8] Yong J L, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. The Journal of Physical Chemistry C, 2013, 117(47): 24907-24912.
[9] Zhang Z X, Li Y A, Ye M, et al. Fabrication of superhydrophobic surface by a laminating exfoliation method[J]. Journal of Materials Chemistry A, 2014, 2(5): 1268-1271.
[10] Jiang T, Koch J, Unger C, et al. Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces[J]. Applied Physics A- Materials Science & Processing, 2012, 108(4): 863-869.
[11] Xu W J, Song J L, Sun J, et al. Fabrication of superhydrophobic surfaces on aluminum substrates using NaNO3 electrolytes[J]. Journal of Materials Science, 2011, 46(18): 5925-5930.
[12] Wu W C, Wang X L, Wang D A, et al. Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids[J]. Chemical Communications, 2009(9): 1043-1045.
[13] Liu Y, Yin X M, Zhang J J, et al. A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochimica Acta, 2014, 125: 395-403.
[14] Liang J S, Li D, Wang D Z, et al. Preparation of stable superhydrophobic film on stainless steel substrate by a combined approach using electrodeposition and fluorinated modification[J]. Applied Surface Science, 2014, 293: 265-270.
[15] Liu L J, Feng X R, Guo M X. Eco-friendly fabrication of superhydrophobic bayerite array on Al foil via an etching and growth process[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25519-25525.
[16] Ou J F, Hu W H, Liu S, et al. Superoleophobic textured copper surfaces fabricated by chemical etching/oxidation and surface fluorination[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10035-10041.
[17] Yang J, Li W. Preparation of superhydrophobic surfaces on Al substrates and the anti- icing behavior[J]. Journal of Alloys and Compounds, 2013, 576: 215-219.
[18] Zang D Y, Li F, Geng X G, et al. Tuning the wettability of an aluminum surface via a chemically deposited fractal dendrite structure [J]. The European Physical Journal E, 2013, 36(6): 1-8.
[19] Yohe S T, Grinstaff M W. A facile approach to robust superhydrophobic 3D coatings via connective-particle formation using the electrospraying process[J]. Chemical Communications, 2013, 49(8): 804-806.
[20] Xu X H, Zhang Z Z, Guo F, et al. Fabrication of bionic superhydrophobic manganese oxide/polystyrene nanocomposite coating[J]. Journal of Bionic Engineering, 2012, 9(1): 11-17.
[21] Rao A V, Latthe S S, Mahadik S A, et al. Mechanically stable and corrosion resistant superhydrophobic sol- gel coatings on copper substrate[J]. Applied Surface Science, 2011, 257(13): 5772-5776.
[22] Schutzius T M, Tiwari M K, Bayer I S, et al. High strain sustaining, nitrile rubber based, large- area, superhydrophobic, nanostructured composite coatings[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(8): 979-985.
[23] Das A, Schutzius T M, Bayer I S, et al. Superoleophobic and conductive carbon nanofiber/fluoropolymer composite films[J]. Carbon, 2012, 50 (3): 1346-1354.
[24] Tiwari M K, Bayer I S, Jursich G M, et al. Highly liquid-repellent, large- area, nanostructured poly(vinylidene fluoride)/poly(ethyl 2- cyanoacrylate) composite coatings: particle filler effects[J]. ACS Applied Materials & Interfaces, 2010, 2(4): 1114-1119.
[25] Schutzius T M, Bayer I S, Tiwari M K, et al. Novel fluoropolymer blends for the fabrication of sprayable multifunctional superhydrophobic nanostructured composites[J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11117-11123.
[26] Das A, Hayvaci H T, Tiwari M K, et al. Superhydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding[J]. Journal of Colloid and Interface Science, 2011, 353(1): 311-315.
[27] Ye J M, Yin Q M, Zhou Y L. Superhydrophilicity of anodic aluminum oxide films: From“honeycomb”to“bird's nest”[J]. Thin Solid Films, 2009, 517(21): 6012-6015.
[28] Song J L, Xu W J, Liu X, et al. Electrochemical machining of superhydrophobic Al surfaces and effect of processing parameters on wettability[J]. Applied Physics A, 2012, 108(3): 559-568.
[29] Sun R D, Nakajima A, Fujishima A, et al. Photoinduced surface wettability conversion of ZnO and TiO2 thin films[J]. The Journal of Physical Chemistry B, 2001, 105(10): 1984-1990.
[30] Fujishima A, Zhang X T, Tryk D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12): 515- 582.
[31] Bae W G, Song K Y, Rahmawan Y, et al. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining[J]. ACS Applied Materials & Interfaces, 2012, 4(7): 3685- 3691.
[32] Kam D H, Bhattacharya S, Mazumder J. Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification[J]. Journal of Micromechanics and Microengineering, 2012, 22(10): 105019.
[33] La D D, Nguyen T A, Lee S H, et al. A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays [J]. Applied Surface Science, 2011, 257(13): 5705-5710.
[34] Tasaltin N, Sanli D, Jonáš A, et al. Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane- modified nanoporous alumina[J]. Nanoscale Research Letters, 2011, 6(1): 1-8.
[35] Huang S Y, Hu Y W, Pan W. Relationship between the structure and hydrophobic performance of Ni- TiO2 nanocomposite coatings by electrodeposition[J]. Surface and Coatings Technology, 2011, 205(13/ 14): 3872-3876.
[36] Qian B T, Shen Z Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21(20): 9007-9009.
[37] 李艳峰, 于志家, 于跃飞, 等. 铝合金基体上超疏水表面的制备[J]. 高 校化学工程学报, 2008(1): 6-10. Li Yanfeng, Yu Zhijia, Yu Yuefei, et al. Fabrication of superhydrophobic surfaces on aluminum alloy[J]. Journal of Chemical Engineering of Chinese Universities, 2008(1): 6-10.
[38] Jia J, Fan J F, Xu B S, et al. Microstructure and properties of the super-hydrophobic films fabricated on magnesium alloys[J]. Journal of Alloys and Compounds, 2013, 554: 142-146.
[39] Xu L P, Wu X W, Meng J X, et al. Papilla-like magnetic particles with hierarchical structure for oil removal from water[J]. Chemical Communications, 2013, 49(78): 8752-8754.
[40] Lu Y, Sathasivam S, Song J L, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347 (6226): 1132-1135.
[41] Deng X, Mammen L, Butt H J, et al. Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 2012, 335 (6064): 67-70.
[42] Choi G R, Park J, Ha J W, et al. Superamphiphobic web of PTFEMA fibers via simple electrospinning without functionalization[J]. Macromolecular Materials and Engineering, 2010, 295(11): 995-1002.
[43] Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir, 2005, 21(3): 956-961.
[44] Wang H, Tang L M, Wu X M, et al. Fabrication and anti-frosting performance of super hydrophobic coating based on modified nanosized calcium carbonate and ordinary polyacrylate[J]. Applied Surface Science, 2007, 253(22): 8818-8824.
[45] Wang G Y, Liang W X, Wang B, et al. Conductive and transparent superhydrophobic films on various substrates by in situ deposition[J]. Applied Physics Letters, 2013, 102(20): 203703.
[46] Ebert D, Bhushan B. Transparent, Superhydrophobic, and wear-Resistant coatings on Glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles[J]. Langmuir, 2012, 28(31): 11391-11399.
[47] Chen Y, Zhang Y B, Shi L, et al. Transparent superhydrophobic/ superhydrophilic coatings for self- cleaning and anti- fogging[J]. Applied Physics Letters, 2012, 101(3): 033701.
[48] Xu L B, Karunakaran R G, Guo J, et al. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 1118-1125.
[49] 郑建勇, 钟明强, 冯杰. 基于超亲水原理的自清洁表面研究进展及产 业化状况[J]. 材料导报, 2009, 27(增1): 42-44. Zheng Jianyong, Zhong Mingqiang, Feng Jie. Research progress and industrial manufacture status of superhydrophilic self-cleaning surfaces [J]. Materials Review, 2009, 27(Suppl 1):42-44.
[50] 封玉凤, 王利新. 自清洁防雾玻璃的研究进展[J]. 玻璃与搪瓷, 2013 (1): 39-42. Feng Yufeng, Wang Lixin. Progress on the self- cleaning and antifogging glass[J]. Glass & Enamel, 2013(1): 39-42.
[51] Cheng Y T, Rodak D E. Is the lotus leaf superhydrophobic?[J]. Applied Physics Letters, 2005, 86(14): 144101.
[52] Gao X F, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2007, 19(17): 2213-2217.
[53] 徐文骥, 宋金龙, 孙晶, 等. 铝基体超疏水表面的抗结冰结霜效果分 析[J]. 低温工程, 2010(6): 11-15. Xu Wenji, Song Jinlong, Sun Jing, et al. Research in ice and frost repellency of superhydrophobic surfaces on aluminum[J]. Cryogenics, 2010(6):11-15.
[54] Tourkine P, Le Merrer M, Quéré D. Delayed freezing on water repellent materials[J]. Langmuir, 2009, 25(13): 7214-7216.
[55] Kulinich S A, Farzaneh M. Ice adhesion on super- hydrophobic surfaces[J]. Applied Surface Science, 2009, 255(18): 8153-8157.
[56] Boreyko J B, Srijanto B R, Nguyen T D, et al. Dynamic defrosting on nanostructured superhydrophobic surfaces[J]. Langmuir, 2013, 29(30): 9516-9524.
[57] 杨洋, 李剑, 胡建林, 等. 绝缘子的超疏水涂层覆冰特性试验研究[J]. 高电压技术, 2010(3): 621-626. Yang Yang, Li Jian, Hu Jianlin, et al. Experimental study in icing properties of superhydrophobic coatings on insulators[J]. High Voltage Engineering, 2010(3): 621-626.
[58] Zang D M, Zhu R W, Wu C X, et al. Fabrication of stable superhydrophobic surface with improved anticorrosion property on magnesium alloy[J]. Scripta Materialia, 2013, 69(8): 614-617.
[59] Xu W J, Song J L, Sun J, et al. Rapid fabrication of large- area, corrosion-resistant superhydrophobic Mg alloy surfaces[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4404-4414.
[60] Yu D Y, Tian J T, Dai J H, et al. Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater[J]. Electrochimica Acta, 2013, 97: 409-419.
[61] Boinovich L B, Gnedenkov S V, Alpysbaeva D A, et al. Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers[J]. Corrosion Science, 2012, 55: 238-245.
[62] Wang P, Zhang D, Qiu R, et al. Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium[J]. Corrosion Science, 2014, 83: 317-326.
[63] Zang D M, Zhu R W, Zhang W, et al. Stearic acid modified aluminum surfaces with controlled wetting properties and corrosion resistance[J]. Corrosion Science, 2014, 83: 86-93.
[64] Ou J F, Liu M Z, Li W, et al. Corrosion behavior of superhydrophobic surfaces of Ti alloys in NaCl solutions[J]. Applied Surface Science, 2012, 258(10): 4724-4728.
[65] Accardo A, Gentile F, Coluccio M L, et al. A combined electrowetting on dielectrics superhydrophobic platform based on silicon microstructured pillars[J]. Microelectronic Engineering, 2012, 98: 651-654.
[66] Lim H S, Kwak D, Lee D Y, et al. UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity[J]. Journal of the American Chemical Society, 2007, 129(14): 4128-4129.
[67] Cheng M J, Liu Q, Ju G N, et al. Bell-shaped superhydrophilic – superhydrophobic- superhydrophilic double transformation on a pHresponsive smart surface[J]. Advanced Materials, 2014, 26(2): 306- 310.
[68] Xiao M, Guo X P, Cheng M J, et al. pH-responsive on-off motion of a superhydrophobic boat: towards the design of a minirobot[J]. Small, 2014, 10(5): 859-865.
[69] Chen H, Pan S J, Xiong Y Z, et al. Preparation of thermo-responsive superhydrophobic TiO2/poly(N- isopropylacrylamide) microspheres[J]. Applied Surface Science, 2012, 258(24): 9505-9509.
[70] Zhang J L, Lu X Y, Huang W H, et al. Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polvamide film[J]. Macromolecular Rapid Communications, 2005, 26 (6): 477-480.
[71] Lin J Y, Ding B, Yang J M, et al. Subtle regulation of the micro- and nanostructures of electrospun polystyrene fibers and their application in oil absorption[J]. Nanoscale, 2012, 4(1): 176-182.
[72] Lin J Y, Tian F, Shang Y W, et al. Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption[J]. Nanoscale, 2012, 4(17): 5316-5320.
[73] Wu J, Wang N, Wang L, et al. Electrospun porous structure fibrous film with high oil adsorption capacity[J]. ACS Applied Materials & Interfaces, 2012, 4(6): 3207-3212.
[74] Zhu H T, Qiu S S, Jiang W, et al. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup[J]. Environmental Science & Technology, 2011, 45(10): 4527-4531.
[75] Calcagnile P, Fragouli D, Bayer I S, et al. Magnetically driven floating foams for the removal of oil contaminants from water[J]. ACS Nano, 2012, 6(6): 5413-5419.
[76] Chen N, Pan Q M. Versatile fabrication of ultralight magnetic foams and application for oil- water separation[J]. ACS Nano, 2013, 7(8): 6875-6883.
[77] Nagappan S, Park J J, Park S S, et al. Bio-inspired, multi-purpose and instant superhydrophobic-superoleophilic lotus leaf powder hybrid micro- nanocomposites for selective oil spill capture[J]. Journal of Materials Chemistry A, 2013, 1(23): 6761-6769.
[78] Sarkar A, Mahapatra S. Novel hydrophobic vaterite particles for oil removal and recovery[J]. Journal of Materials Chemistry A, 2014, 2 (11): 3808-3818.
[79] Wang B, Li J, Wang G Y, et al. Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation[J]. ACS Applied Materials & Interfaces, 2013, 5(5): 1827-1839.
[80] Zhou X Y, Zhang Z Z, Xu X H, et al. Facile fabrication of superhydrophobic sponge with selective absorption and collection of oil from water[J]. Industrial & Engineering Chemistry Research, 2013, 52(27): 9411-9416.
[81] Zhu Q, Chu Y, Wang Z K, et al. Robust superhydrophobic polyurethane sponge as a highly reusable oil- absorption material[J]. Journal of Materials Chemistry A, 2013, 1(17): 5386-5393.
[82] Zhu Q, Pan Q M. Mussel-inspired direct immobilization of nanoparticles and application for oil- water separation[J]. ACS Nano, 2014, 8(2): 1402-1409.
[83] Zhu Q, Pan Q M, Liu F T. Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges [J]. The Journal of Physical Chemistry C, 2011, 115(35): 17464-17470.
[84] Cheng M, Gao Y F, Guo X P, et al. A Functionally integrated device for effective and facile oil spill cleanup[J]. Langmuir, 2011, 27(12): 7371-7375.
[85] Cheng M J, Ju G N, Jiang C, et al. Magnetically directed clean-up of underwater oil spills through a functionally integrated device[J]. Journal of Materials Chemistry A, 2013, 1(43): 13411-13416.
[86] Wang S H, Li M, Lu Q H. Filter paper with selective absorption and aeparation of liquids that differ in surface tension[J]. ACS Applied Materials & Interfaces, 2010, 2(3): 677-683.
[87] Dong X C, Chen J, Ma Y W, et al. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water[J]. Chemical Communications, 2012, 48(86): 10660-10662.
[88] Gui X C, Zeng Z P, Lin Z Q, et al. Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation [J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5845-5850.
[89] Cervin N, Aulin C, Larsson P, et al. Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids[J]. Cellulose, 2012, 19(2): 401-410.
[90] Tang Y, Yeo K L, Chen Y, et al. Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties[J]. Journal of Materials Chemistry A, 2013, 1(23): 6723-6726.
[91] Hayase G, Kanamori K, Fukuchi M, et al. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water[J]. Angewandte Chemie International Edition, 2013, 52(7): 1986-1989.
[92] Feng L, Zhang Z Y, Mai Z H, et al. A Super-hydrophobic and superoleophilic coating mesh film for the separation of oil and water[J]. Angewandte Chemie International Edition, 2004, 43(15): 2012-2014.
[93] Xue Z X, Wang S T, Lin L, et al. A novel superhydrophilic and underwater superoleophobic hydrogel- coated mesh for oil/water separation[J]. Advanced Materials, 2011, 23(37): 4270-4273.
[94] Liang W X, Guo Z G. Stable superhydrophobic and superoleophilic soft porous materials for oil/water separation[J]. RSC Advances, 2013, 3(37): 16469-16474.
[95] Kota A K, Kwon G, Choi W, et al. Hygro-responsive membranes for effective oil- water separation[J]. Nature Communication, 2012, 3: 1025.
[96] Zhang W B, Shi Z, Zhang F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25(14): 2071-2076.
[97] Zhang W B, Zhu Y Z, Liu X, et al. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions[J]. Angewandte Chemie International Edition, 2014, 53(3): 856-860.
[98] Zhang F, Zhang W B, Shi Z, et al. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation[J]. Advanced Materials, 2013, 25(30): 4192-4198.
[99] Tao M M, Xue L X, Liu F, et al. An Intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation[J]. Advanced Materials, 2014, 26(18): 2943-2948.
[100] Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.
[101] Feng X Q, Gao X F, Wu Z N, et al. Superior water repellency of water strider legs with hierarchical structures: Experiments and analysis[J]. Langmuir, 2007, 23(9): 4892-4896.
[102] Pan Q M, Liu J, Zhu Q. A Water strider-like model with large and stable loading capacity fabricated from superhydrophobic copper foils [J]. ACS Applied Materials & Interfaces, 2010, 2(7): 2026-2030.
[103] Lu Y, Song J L, Liu X, et al. Loading capacity of a self-assembled superhydrophobic boat array fabricated via electrochemical method [J]. Micro & Nano Letters, 2012, 7(8): 786-789.
[104] Autumn K, Sitti M, Liang Y A, et al. Evidence for van der Waals adhesion in gecko setae[J]. Proceedings of the National Academy of Sciences, 2002, 99 (19): 12252-12256.
[105] Li J, Liu X H, Ye Y P, et al. Gecko-inspired synthesis of superhydrophobic ZnO surfaces with high water adhesion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384 (1-3): 109-114.
[106] 姚佳, 王剑楠, 于颜豪, 等. 仿生水稻叶表面制备及其润湿性研究 [J]. 科学通报, 2012(15): 1362-1366. Yao Jia, Wang Jiannan, Yu Yanhao, et al. Biomimetic fabrication and characterization of an artificical rice leaf surface with anisotropic wetting[J]. Chinese Science Bulletin, 2012, 57(15): 1362-1366.
[107] Xu Q F, Wang J N, Smith I H, et al. Directing the transportation of a water droplet on a patterned superhydrophobic surface[J]. Applied Physics Letters, 2008, 93(23):233112.
[108] Mertaniemi H, Jokinen V, Sainiemi L, et al. Superhydrophobic tracks for low- friction, guided transport of water droplets[J]. Advanced Materials, 2011, 23(26): 2911-2914.
[109] Kang S M, Lee C, Kim H N, et al. Directional oil sliding surfaces with hierarchical anisotropic groove microstructures[J]. Advanced Materials, 2013, 25(40): 5756-5761.
[110] Ghosh A, Ganguly R, Schutzius T M, et al. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms[J]. Lab on a Chip, 2014, 14(9): 1538-1550.
[111] Sun T L, Tan H, Han D, et al. No platelet can adhere-largely improved blood compatibility on nanostructured superhydrophobic surfaces[J]. Small, 2005, 1(10): 959-963.
[112] Lee S M, Song J H, Jung P G, et al. Nanotextured superhydrophobic micromesh[J]. Sensors and Actuators A: Physical, 2011, 171(2): 233- 240.
[113] Shi F, Niu J, Liu J, et al. Towards understanding why a superhydrophobic coating is needed by water striders[J]. Advanced Materials, 2007, 19 (17): 2257-2261.