Articles

A modified prediction equation of water breakthrough time for fractured wells in low permeability gas reservoirs with bottom water

  • LI Xiaoping ,
  • SHANG Yingxue ,
  • LIU Qiguo ,
  • SONG Li ,
  • TAN Xiaohua
Expand
  • 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. Drilling & Production Engineering Technology Research Institute, Chuanqing Drilling Engineering Company Limited, PetroChina, Guanghan 618300, China

Received date: 2015-01-27

  Revised date: 2015-03-26

  Online published: 2015-05-15

Abstract

Jeopardized by poor reservoir properties, gas wells in low permeability reservoirs with bottom water should be fractured in order to acquire industrial capacities. Therefore, a modified equation for predicting well's water breakthrough time is studied for effectively developing low permeability gas reservoirs with bottom water. Based on the characteristics of seepage flow in fractured wells, the seepage field is divided into two parts, the perforation interval and its lower section. With the aid of steady state seepage theory, productivity equations for all fields are derived respectively. Eventually, a modified prediction equation is established by means of utilizing the motion equation of water cone apex. Case study shows that fracturing will postpone the process of water breakthrough and the time calculated by this article has less error as compared with the value gained by practical production data. The analysis on sensitive factors reveals that each parameter has its optimal value. With the increase of perforation degree, water breakthrough time will increase at first and then decrease. And the larger the fracture half-length and conductivity are, the longer the water breakthrough time will be. However, the increasing rates tend to be reduced gradually.

Cite this article

LI Xiaoping , SHANG Yingxue , LIU Qiguo , SONG Li , TAN Xiaohua . A modified prediction equation of water breakthrough time for fractured wells in low permeability gas reservoirs with bottom water[J]. Science & Technology Review, 2015 , 33(9) : 40 -45 . DOI: 10.3981/j.issn.1000-7857.2015.09.006

References

[1] 张宁生. 低渗气藏开发的关键性技术与发展趋势[J]. 天然气工业, 2006, 26 (12): 38-41. Zhang Ningsheng. Key production technologies of low-permeability gas reservoirs and their development trend[J]. Natural Gas Industry, 2006, 26(12): 38-41.
[2] 李士伦, 孙雷, 杜建芬, 等. 低渗致密气藏、凝析气藏开发难点与对策[J]. 新疆石油地质, 2004, 25(2): 156-159. Li Shilun, Sun Lei, Du Jianfen, et al. Difficulties and measures for development of low permeability tight gas reservoirs and condensate gas reservoirs[J]. Xinjiang Petroleum Geology, 2004, 25(2): 156-159.
[3] Sobocinski D P, Cornelius A J. A correlation for predicting water coning time[J]. Journal of Petroleum Technology, 1965, 17(5): 594-600.
[4] Tabatabaei M, Ghalambor A, Guo B. An analytical solution for water coning in vertical wells [J]. SPE Production & Operations, 2012, 27(2): 195-204.
[5] 郑洪印. 底水气藏气井动态模拟研究[J]. 新疆石油地质, 1991, 12 (3): 223-228. Zheng Hongyin. Simulation study of gas well performance for gas reservoir with bottom water[J]. Xinjiang Petroleum Geology, 1991, 12 (3): 223-228.
[6] 黄炳光, 刘蜀知. 实用油藏工程与动态分析方法[M]. 北京: 石油工业出版社, 1998: 199-203. Huang Bingguang, Liu Shuzhi. Reservoir engineering and dynamic practical analysis methods[M]. Beijing: Petroleum Industry Press, 1998: 199-203.
[7] 王会强, 李晓平, 杨琪, 等. 底水气藏见水时间预测方法[J]. 新疆石油地质, 2007, 28(1): 92-93. Wang Huiqiang, Li Xiaoping, Yang Qi, et al. A prediction of water breakthrough time in gas reservoirs with bottom water [J]. Xinjiang Petroleum Geology, 2007, 28(1): 92-93.
[8] 张庆辉, 李相方, 张磊, 等. 考虑启动压力梯度的低渗底水气藏见水时间预测[J]. 石油钻探技术, 2012, 40(5): 96-99. Zhang Qinghui, Li Xiangfang, Zhang Lei, et al. Prediction of water breakthrough time in low permeability gas reservoirs with bottom water in consideration of threshold pressure[J]. Petroleum Drilling Techniques, 2012, 40(5): 96-99.
[9] Ahmadi M A, Ebadi M, Hosseini S M. Prediction breakthrough time of water coning in the fractured reservoirs by implementing low parameter support vector machine approach[J]. Fuel, 2014, 117: 579-589.
[10] 张庆辉, 屈信忠, 柳金城, 等. 低渗透底水气藏压裂气井见水时间预测[J]. 新疆石油地质, 2014, 35(1): 77-81. Zhang Qinghui, Qu Xinzhong, Liu Jincheng, et al. Prediction of water breakthrough time in fractured gas well in low-permeablitity gas reservoir with bottom water [J]. Xinjiang Petroleum Geology, 2014, 35 (1): 77-81.
[11] 关文龙, 李敬松, 李相方. 低渗底水气藏设开水层气水合采新方法[J]. 天然气工业, 2006, 23(5): 79-82. Guan Wenlong, Li Jingsong, Lixiangfang. New technique of gas water recovering toghther for low permeability and bottom water reservoir by perforating water-bearing formation[J]. Natural Gas Industry, 2006, 23 (5): 79-82.
[12] 吴克柳, 李相方, 韩易龙, 等. 底水气藏水平井临界生产压差变化规律[J]. 新疆石油地质, 2011, 32(6): 630-633. Wu Keliu, Li Xiangfang, Han Yilong, et al. Variation of critical producing pressure differential of horizontal well in gas reservoir with bottom water[J]. Xinjiang Petroleum Geology, 2011, 32(6): 630-633.
[13] 汪永利, 蒋廷学, 曾斌. 气井压裂后稳态产能的计算[J]. 石油学报, 2003, 24(4): 65-68. Wang Yongli, Jiang Tingxue, Zeng Bin. Productivity performances of hydraulically fractured gas well[J]. Acta Petrolei Sinica, 2003, 24(4): 65-68.
[14] 郭晶晶, 张烈辉, 梁斌, 等. 考虑启动压力梯度的低渗透气藏压裂井产能分析[J]. 天然气工业, 2010, 30(7): 45-47. Guo Jingjing, Zhang Liehui, Liang bin, et al. Productivity analysis of a fractured well in low-permeability gas reservoirs considering threshold pressure gradient[J]. Natural Gas Industry, 2010, 30(7): 45-47.
[15] 熊健, 刘向君, 陈朕. 低渗气藏压裂井动态产能预测模型研究[J]. 岩性油气藏, 2013, 25(2): 82-85. Xiong Jian, Liu Xiangjun, Chen Zhen. Dynamic productivity prediction model for fracturing wells in low permeability gas reservoir [J]. Lithology Reservoirs, 2013, 25(2): 82-85.
[16] 孟令强, 黄炳光, 孟琦, 等. 考虑变启动压降的低渗气藏压裂井产能分析[J]. 天然气勘探与开发, 2013, 36(4): 57-60. Meng Lingqiang, Huang Bingguang, Meng Qi, et al. Analysis on fractured-well productivity in low-permeability gas reservoir with consideration of variable starting pressure drop[J]. Natural Gas Exploration and Development, 2013, 36(4): 57-60.
[17] 罗天雨, 赵金洲, 郭建春. 求取压裂后气井产能的椭圆流方法[J]. 天然气工业, 2005, 25(10): 94-96. Luo Tianyu, Zhao Jinzhou, Guo Jianchun. Elliptical flow method to calculate productivity of gas wells after fracturing[J]. Natural Gas Industry, 2005, 25(10): 94-96.
[18] 何应付, 徐联玉, 吕万一, 等. 低渗透气藏压裂井产能分析[J]. 特种油气藏, 2006, 13(5): 59-61. He Yingfu, Xu Lianyu, Lü Wanyi, et al. Productivity analysis of fractured well in low permeability gas reservoir[J]. Special Oil and Gas Reservoirs, 2006, 13(5): 59-61.
[19] 周琦, 姜汉桥, 李志刚. 低渗透气藏垂直裂缝井产能计算[J]. 油气井测试, 2009, 18(2): 8-11. Zhou Qi, Jiang Hanqiao, Li Zhigang. Deliverability calculation for gas wells with vertical fracture in low permeability reservoir[J]. Well Testing, 2009, 18(2): 8-11.
[20] 邓英尔, 刘慈群, 王允诚. 垂直裂缝井两相非达西椭圆渗流特征线解、差分解及开发指标计算方法[J]. 石油勘探与开发, 2000, 27(1): 60-63. Deng Yinger, Liu Ciqun, Wang Yuncheng. Characteristic solution and finite difference solution of two-phase percolation in the direction of normal of ellipse and calculation of development indexes[J]. Petroleum Exploration and Development, 2000, 27(1): 60-63.
[21] Forchheimer P. Wasserbewegung durch boden[J]. Zeitz Vereines Deutsch Ingenieure, 1901, 45(1782): 1781-1788.
[22] 杨丽娟. 低渗透底水气藏水锥动态及合理开采对策应用研究[D]. 成都: 西南石油大学, 2006: 41-43. Yang Lijuan. Water coning dynamics in low permeability gas reservoir with bottom water and reasonable production plan[D]. Chengdu: Southwest Petroleum University, 2006: 41-43
Outlines

/