[1] Kroto H W, Heath J R, O'Brien S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318(6042): 162-163.
[2] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354 (6348): 56-58.
[3] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[4] Wan W B, Zhao Z B, Fan Y R, et al. Graphene derivatives: Synthesis and applications[J]. Progress in Chemistry, 2011, 23(9): 1883-1891.
[5] Wick P, Louw-Gaume A E, Kucki M, et al. Classification framework for graphene-based materials[J]. Angewandte Chemie International Edition, 2014, 53(30): 7714-7718.
[6] Yadav A, Mishra P C. Polyradicals of polycyclic aromatic hydrocarbons as finite size models of graphene: Highly open-shell nature, symmetry breaking, and enhanced-edge electron density[J]. The Journal of Physical Chemistry A, 2013, 117(36): 8958-8968.
[7] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[8] Wang S, Tang L A, Bao Q, et al. Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets[J]. Journal of the American Chemical Society, 2009, 131 (46): 16832-16837.
[9] Lu J, Yeo P S E, Gan C K, et al. Transforming C60 molecules into graphene quantum dots[J]. Nature Nanotechnology, 2011, 6(4): 247-252.
[10] Castillo-Martinez E, Carretero-Gonzalez J, Sovich J, et al. High temperature structural transformations of few layer graphene nanoribbons obtained by unzipping carbon nanotubes[J]. Journal of Materials Chemistry A, 2014, 2(1): 221-228.
[11] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240): 872-876.
[12] Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458(7240): 877-880.
[13] Ma X, Zachariah M R, Zangmeister C D. Crumpled nanopaper from graphene oxide[J]. Nano Letters, 2012, 12(1): 486-489.
[14] Luo J, Jang H D, Sun T, et al. Compression and aggregation-resistant particles of crumpled soft sheets[J]. ACS Nano, 2011, 5(11): 8943-8949.
[15] Wang W N, Jiang Y, Biswas P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: Confinement force relationship[J]. Journal of Physical Chemistry Letters, 2012, 3(21): 3228-3233.
[16] Mao S, Wen Z, Kim H, et al. A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications[J]. ACS Nano, 2012, 6(8): 7505-7513.
[17] Yang H, Wang Y, Song Y, et al. Assembling of graphene oxide in an isolated dissolving droplet[J]. Soft Matter, 2012, 8: 11249-11254.
[18] Shin M K, Lee B, Kim S H, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes[J]. Nature Communications, 2012, 3: 650-657.
[19] Hu C, Zhao Y, Cheng H, et al. Graphene microtubings: Controlled fabrication and site-specific functionalization[J]. Nano Letters, 2012, 12(11): 5879-5884.
[20] Xiang C, Behabtu N, Liu Y, et al. Graphene nanoribbons as an advanced precursor for making carbon fiber[J]. ACS Nano, 2013, 7(2): 1628-1637.
[21] Zheng J, Liu H T, Wu B, et al. Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen[J]. Advanced Materials, 2011, 23(21): 2460-2463.
[22] Mpourmpakis G, Tylianakis E, Froudakis G E. Carbon nanoscrolls: A promising material for hydrogen storage[J]. Nano Letters, 2007, 7(7): 1893-1897.
[23] Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls[J]. Science, 2003, 299(5611): 1361-1361.
[24] Xie X, Ju L, Feng X, et al. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene[J]. Nano Letters, 2009, 9 (7): 2565-2570.
[25] Chen H, Müller M B, Gilmore K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Advanced Materials, 2008, 20(18): 3557-3561.
[26] Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152): 457-460.
[27] Yang X, Zhu J, Qiu L, et al. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors[J]. Advanced Materials, 2011, 23 (25): 2833-2838.
[28] Wan W, Li L, Zhao Z, et al. Ultrafast fabrication of covalently crosslinked multifunctional graphene oxide monoliths[J]. Advanced Functional Materials, 2014, 24(31): 4915-4921.
[29] Hu H, Zhao Z, Wan W, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15): 2219-2223.
[30] Tang Z, Shen S, Zhuang J, et al. Noble-metal-promoted threedimensional macroassembly of single-layered graphene oxide[J]. Angewandte Chemie International Edition, 2010, 49(27): 4603-4607.
[31] Chen Y, Guo F, Jachak A, et al. Aerosol synthesis of cargo-filled graphene nanosacks[J]. Nano Letters, 2012, 12(4): 1996-2002.
[32] Zhou G W, Wang J, Gao P, et al. Facile spray drying route for the three-dimensional graphene-encapsulated Fe2O3 nanoparticles for lithium ion battery anodes[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1197-1204.
[33] Xie K, Qin X, Wang X, et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials, 2012, 24(3): 347-352.
[34] Yoon S M, Choi W M, Baik H, et al. Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles[J]. ACS Nano, 2012, 6(8): 6803-6811.
[35] Wu L, Feng H, Liu M, et al. Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction[J]. Nanoscale, 2013, 5 (22): 10839-10843.
[36] Lee J S, Kim S I, Yoon J C, et al. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor[J]. ACS Nano, 2013, 7(7): 6047-6055.
[37] Bachmatiuk A, Mendes R G, Hirsch C, et al. Few-layer graphene shells and nonmagnetic encapsulates: A versatile and nontoxic carbon nanomaterial[J]. ACS Nano, 2013, 7(12): 10552-10562.
[38] Lee S, Hong J, Koo J H, et al. Synthesis of few-layered graphene nanoballs with copper cores using solid carbon source[J]. ACS Applied Materials & Interfaces, 2013, 5(7): 2432-2437.
[39] Guo P, Song H, Chen X. Hollow graphene oxide spheres self-assembled by W/O emulsion[J]. Journal of Materials Chemistry, 2010, 20(23): 4867-4874.
[40] Wan W, Zhao Z, Hughes T C, et al. Graphene oxide liquid crystal pickering emulsions and their assemblies[J]. Carbon, 2015, 85: 16-23.
[41] Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced Materials, 2010, 22(6): 734-738.
[42] Hu C, Yu C, Li M, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II) detection[J]. Small, 2014, 10(23): 4926-4933.
[43] Yan X, Cui X, Li L S. Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. Journal of the American Chemical Society, 2010, 132(17): 5944-5945.
[44] Xu Z, Gao C. Aqueous liquid crystals of graphene oxide[J]. ACS Nano, 2011, 5(4): 2908-2915.
[45] Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011, 2: 571-579.
[46] Xu Z, Gao C. Graphene in macroscopic order: Liquid crystals and wetspun fibers[J]. Accounts of Chemical Research, 2014, 47(4): 1267-1276.
[47] Jalili R, Aboutalebi S H, Esrafilzadeh D, et al. Graphene oxide: Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: Towards multifunctional textiles[J]. Advanced Functional Materials, 2013, 43: 5345-5354.
[48] Xu Z, Sun H, Zhao X, et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Advanced Materials, 2013, 25(2): 188-193.
[49] Xu Z, Zhang Y, Li P, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores[J]. ACS Nano, 2012, 6(8): 7103-7113.
[50] Dong Z, Jiang C, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24 (14): 1856-1861.
[51] Hu C, Zhao Y, Cheng H, et al. Graphene microtubings: Controlled fabrication and site-specific functionalization[J]. Nano Letters, 2012, 12(11): 5879-5884.
[52] Cheng H, Liu J, Zhao Y, et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots[J]. Angewandte Chemie International Edition, 2013, 52(40): 10482-10486.
[53] Taroni A. Motorizing graphene fibres[J]. Nature Materials, 2014, 13(3): 223-223.
[54] Li X, Zhao T, Chen Q, et al. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers[J]. Physical Chemistry Chemical Physics, 2013, 15(41): 17752-17757.
[55] Li X, Sun P, Fan L, et al. Multifunctional graphene woven fabrics[J]. Scientific Reports, 2012, 2: 395-402.
[56] Wang Y, Bian K, Hu C, et al. Flexible and wearable graphene/ polypyrrole fibers towards multifunctional actuator applications[J]. Electrochemistry Communications, 2013, 35: 49-52.
[57] Zhao Y, Song L, Zhang Z, et al. Stimulus-responsive graphene systems towards actuator applications[J]. Energy & Environmental Science, 2013, 6(12): 3520-3536.
[58] Yang Z, Sun H, Chen T, et al. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency[J]. Angewandte Chemie International Edition, 2013, 52(29): 7545-7548.
[59] Chen Q, Meng Y, Hu C, et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor[J]. Journal of Power Sources, 2014, 247: 32-39.
[60] Hu Y, Cheng H, Zhao F, et al. All-in-one graphene fiber supercapacitor[J]. Nanoscale, 2014, 6(12): 6448-6451.
[61] Patra N, Wang B, Král P. Nanodroplet activated and guided folding of graphene nanostructures[J]. Nano Letters, 2009, 9(11): 3766-3771.
[62] Zheng J, Liu H, Wu B, et al. Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen[J]. Advanced Materials, 2011, 23(21): 2460-2463.
[63] Wan W, Zhao Z, Hu H, et al. Folding of graphene into elastic nanobelts[J]. Carbon, 2014, 76: 46-53.
[64] Wan W, Zhao Z, Hu H, et al. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength[J]. Materials Research Bulletin, 2013, 48(11): 4797-4803.
[65] Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444.
[66] Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nano, 2008, 3(2): 101-105.
[67] Skákalová V, Kaiser A B, Dettlaff-Weglikowska U, et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes[J]. The Journal of Physical Chemistry B, 2005, 109(15): 7174-7181.
[68] Yang X, Qiu L, Cheng C, et al. Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films[J]. Angewandte Chemie International Edition, 2011, 50(32): 7325-7328.
[69] Yang X, Cheng C, Wang Y, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science, 2013, 341(6145): 534-537.
[70] Chen C, Yang Q H, Yang Y, et al. Self-assembled free-standing graphite oxide membrane[J]. Advanced Materials, 2009, 21(29): 3007-3011.
[71] Lü W, Xia Z, Wu S, et al. Conductive graphene-based macroscopic membrane self-assembled at a liquid-air interface[J]. Journal of Materials Chemistry, 2011, 21(10): 3359-3364.
[72] Lü W, Li Z, Zhou G, et al. Tailoring microstructure of graphenebased membrane by controlled removal of trapped water inspired by the phase diagram[J]. Advanced Functional Materials, 2014, 24(22): 3456-3463.
[73] Wang D W, Li F, Zhao J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for highperformance flexible electrode[J]. ACS Nano, 2009, 3(7): 1745-1752.
[74] Chen S, Duan J, Jaroniec M, et al. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction[J]. Advanced Materials, 2014, 26(18): 2925-2930.
[75] Worsley M A, Pauzauskie P J, Olson T Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. Journal of the American Chemical Society, 2010, 132(40): 14067-14069.
[76] Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330.
[77] Xu Y, Wu Q, Sun Y, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels[J]. ACS Nano, 2010, 4(12): 7358-7362.
[78] Bai H, Li C, Wang X, et al. On the gelation of graphene oxide[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5545-5551.
[79] Ling Q, Jeffery Z L, Shery L Y C, et al. Biomimetic superelastic graphenebased cellular monoliths[J]. Nature Communications, 2012, 3: 1241-1241.
[80] Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560.
[81] Nanomaterials: Solid carbon, springy and light[J]. Nature, 2013, 494 (7438): 404-404.
[82] Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428.
[83] Li N, Chen Z, Ren W, et al. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates[J]. Proceedings of the National Academy of Sciences, 2012, 109(43): 17360-17365.
[84] Ito Y, Tanabe Y, Qiu H J, et al. High-quality three-dimensional nanoporous graphene[J]. Angewandte Chemie International Edition, 2014, 53(19): 4822-4826.
[85] Ito Y, Qiu H J, Fujita T, et al. Bicontinuous nanoporous N-doped graphene for the oxygen reduction reaction[J]. Advanced Materials, 2014, 26(24): 4145-4150.