[1] Allen C D , Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259 (4): 660-684.
[2] Godoy O, de Lemos-Filho J P, Valladares F, et al. Invasive species can handle higher leaf temperature under water stress than Miditerranean natives[J]. Environmental and Experimental Botany, 2011, 71(2): 207-214.
[3] Schramm F, Ganguli A, Kiehlmann E, et al. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis[J]. Plant Molecular Biology, 2006, 60(5): 759-772.
[4] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. Journal of Expriemental Botany, 2007, 58(2): 221-227.
[5] Thomashow M F. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway[J]. Plant Physiology, 2010, 154(2): 571-577.
[6] Dietz K J, Vogel M O, Viehhauser A. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling[J]. Protoplasma, 2010, 245(1-4): 3-14.
[7] Tang W, Charles T M, Newton R J. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth[J]. Plant Molecular Biology, 2005, 59(4): 603-617.
[8] Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta, 2012, 1819(2): 120-128.
[9] Swindell W R. The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana[J]. Genetics, 2006, 174(4): 1811-1824.
[10] Huang D, Wu W, Abrams, S R, et al. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors[J]. Journal of Expriemental Botany, 2008, 59(11): 2991-3007.
[11] Umezawa T, Fujita M, Fujita Y, et al. Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future[J]. Current Opinion in Biotechnology, 2006, 17(2): 113-122.
[12] Debnath M, Pandey M, Bisen, P S. An omics approach to understand the plant abiotic stress[J]. Omics, 2011, 15(11): 739-762.
[13] Ahsan N, Renaut J, Komatsu S. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals[J]. Proteomics, 2009, 9(10): 2602-2621.
[14] Timperio A M, Egidi M G, Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP) [J]. Journal of Proteomics, 2008, 71(4): 391-411.
[15] Gazanchian A, Hajheidari M, Khoshkholgh Sima N, et al. Proteome response of Elymus elongatum to severe water stress and recovery[J]. Journal of Expriemental Botany, 2007, 58(2): 291-300.
[16] Hajheidari M, Abdollahian-Noghabi M, Askari H, et al. Proteome analysis of sugar beet leaves under drought stress[J]. Proteomics, 2005, 5(4): 950-960.
[17] Renaut J, Hausman J F, Wisniewski M E. Proteomics and low-temperature studies: Bridging the gap between gene expression and metabolism[J]. Plant Physiology, 2006, 126(1): 97-109.
[18] Larkindale J, Vierling E. Core genome responses involved in acclimation to high temperature[J]. Plant Physiology, 2008, 146(2): 748-761.
[19] Kim J M, To T K, Ishida J, et al. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2008, 49(10): 1580-1588.
[20] Mlynarova L, Nap J P, Bisselin T. The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress[J]. Plant Journal, 2007, 51(5): 874-885.
[21] Liu J, Li Y, Gao J, et al. The progress of the proteomic technology[J]. Space Medicine & Medical Engineering, 2009, 22(2): 151-156.
[22] Krenkova J, Foret F. On-line CE/ESI/MS interfacing: Recent developments and applications in proteomics[J]. Proteomics, 2012, 12(19/20): 2978-2990.
[23] Fiehn O. Metabolomics-the link between genotypes and phenotypes[J]. Plant Molecular Biology, 2002, 48(1/2): 155-171.
[24] Shulaev V, Cortes D, Miller G, et al. Metabolomics for plant stress response[J]. Physiologia Plantarum, 2008, 132(2): 199-208.
[25] Cramer G R, Ergul A, Grimplet J, et al. Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles[J]. Functional and Integrative Genomics, 2007, 7(2): 111-134.
[26] Urano K, Maruyama K, Ogata Y, et al. Characterization of the ABAregulated global responses to dehydration in Arabidopsis by metabolomics[J]. Plant Journal, 2009, 57(6): 1065-1078.
[27] Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. Journal of Expriemental Botany, 2012, 63(4): 1593-1608.
[28] Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: Past, present and future[J]. Plant Journal, 2010, 61(6): 1041-1052.
[29] Shulaev V. Metabolomics technology and bioinformatics[J]. Briefings in Bioinformatics, 2006, 7(2): 128-139.
[30] Sumner L W, Mendes P, Dixon R A. Plant metabolomics: large-scale phytochemistry in the functional genomics era[J]. Phytochemistry, 2003, 62(6): 817-836.
[31] Roessner U, Wagner C, Kopka J, et al. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry[J]. Plant Journal, 2000, 23(1): 131-142.
[32] Bajad S, Shulaev V. Highly-parallel metabolomics approaches using LC-MS2 for pharmaceutical and environmental analysis[J]. Trends in Analytical Chemistry, 2007, 26(6): 625-636.
[33] Rizhsky L, Liang H J, Shuman J, et al. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress[J]. Plant Physiology, 2004, 134(4): 1683-1696.
[34] Mittler R. Abiotic stress, the field environment and stress combination[J]. Trends in Plant Science, 2006, 11(1): 15-19.
[35] Sims K J, Alvarez-Vasquez F, Voit E O, et al. A guide to biochemical systems modeling of sphingolipids for the biochemist[J]. Methods in Enzymology, 2007, 432: 319-350.
[36] Morioka R, Kanaya S, Hirai M, et al. Predicting state transitions in the transcriptome and metabolome using a linear dynamical system model[J]. BMC Bioinformatics, 2007, 8: 343.
[37] Hirai M Y, Klein M, Fujikawa Y, et al. Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics[J]. Journal of Biological Chemistry, 2005, 280(27): 25590-25595.
[38] Le Lay P, Isaure M P, Sarry J E. Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a caesium stress. Influence of potassium supply[J]. Biochimie, 2006, 88(11): 1533-1547.
[39] Williams Thomas C R, Poolman Mark G, Howden Andrew J M. A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions[J]. Plant Physiology, 2010, 154 (1): 311-323.
[40] Mehrotra B, Mendes P. Bioinformatics approaches to integrate metabolomics and other systems biology data[M]//Saito K, Dixon R A, Willmitzer L. 57 Plant Metabolomics. Heidelberg: Springer-Verlag, 2006: 105-115.
[41] Martins A M, Sha W, Evans C, et al. Comparison of sampling techniques for parallel analysis of transcript and metabolite levels in Saccharomyces cerevisiae[J]. Yeast, 2007, 24(3): 181-188.
[42] Srivastava S, Pathak A D, Gupta P S. Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane[J]. Journal of Environmental Biology, 2012, 33(3): 657-661.