[1] Roehm H, Oehlerking J, Heinz T, et al. STL model check ing of continuous and hybrid systems[M]//Automated tech nology for verification and analysis. Cham:Springer Inter national Publishing, 2016:412-427.
[2] Lindemann L, Dimarogonas D V. Efficient automatabased planning and control under spatio-temporal logic specifications[C]//Proceedings of 2020 American Control Conference (ACC). Piscataway, NJ:IEEE, 2020:4707-4714.
[3] Smith S L, Tůmová J, Belta C, et al. Optimal path plan ning for surveillance with temporal-logic constraints[J]. International Journal of Robotics Research, 2011, 30(14):1695-1708.
[4] Kress-Gazit H, Fainekos G E, Pappas G J. Temporal-log ic-based reactive mission and motion planning[J]. IEEE Transactions on Robotics, 2009, 25(6):1370-1381.
[5] Tabuada P, Pappas G J. Linear time logic control of dis crete-time linear systems[J]. IEEE Transactions on Auto matic Control, 2006, 51(12):1862-1877.
[6] Sewlia M, Verginis C K, Dimarogonas D V. Cooperative sampling-based motion planning under signal temporal logic specifications[C]//Proceedings of 2023 American Control Conference (ACC). Piscataway, NJ:IEEE, 2023:2697-2702.
[7] Saha I, Ramaithitima R, Kumar V, et al. Automated com position of motion primitives for multi-robot systems from safe LTL specifications[C]//Proceedings of IEEE/RSJ In ternational Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE, 2014:1525-1532.
[8] Kloetzer M, Belta C. Automatic deployment of distributed teams of robots from temporal logic motion specifications[J]. IEEE Transactions on Robotics, 2010, 26(1):48-61.
[9] Lindemann L, Nowak J, Schonbachler L, et al. Coupled multi-robot systems under linear temporal logic and sig nal temporal logic tasks[J]. IEEE Transactions on Control Systems Technology, 2021, 29(2):858-865.
[10] Liu Z Y, Wu B, Dai J, et al. Distributed communicationaware motion planning for multi-agent systems from STL and SpaTeL specifications[C]//Proceedings of 2017 IEEE 56th Annual Conference on Decision and Control (CDC). New York:ACM, 2017:4452-4457.
[11] Ulusoy A, Smith S L, Ding X C, et al. Optimality and ro bustness in multi-robot path planning with temporal log ic constraints[J]. International Journal of Robotics Re search, 2013, 32(8):889-911.
[12] Loizou S G, Kyriakopoulos K J. Automatic synthesis of multi-agent motion tasks based on LTL specifications[C]//Proceedings of the 43rd IEEE Conference on Deci sion and Control (CDC). Paradise Island, Bahamas:IEEE, 2004:153-158.
[13] Kantaros Y, Zavlanos M M. Sampling-based optimal con trol synthesis for multirobot systems under global tempo ral tasks[J]. IEEE Transactions on Automatic Control, 2019, 64(5):1916-1931.
[14] Luo X S, Zavlanos M M. Temporal logic task allocation in heterogeneous multirobot systems[J]. IEEE Transac tions on Robotics, 2022, 38(6):3602-3621.
[15] Lamport L. What good is temporal logic?[J]. Information Processing, 2016, 83:657-668.
[16] Alur R, Henzinger T A. A really temporal logic[C]//Pro ceedings of the 30th Annual Symposium on Foundations of Computer Science. New York:ACM, 1989:164-169.
[17] Ulusoy A, Smith S L, Ding X C, et al. Robust multi-ro bot optimal path planning with temporal logic constraints[C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2011:4693-4698.
[18] Ding X C, Smith S L, Belta C, et al. Optimal control of Markov decision processes with linear temporal logic constraints[J]. IEEE Transactions on Automatic Control, 2014, 59(5):1244-1257.
[19] Cai M Y, Xiao S P, Li Z J, et al. Optimal probabilistic motion planning with potential infeasible LTL constraints[J]. IEEE Transactions on Automatic Control, 2023, 68(1):301-316.
[20] Pacheck A, Kress-Gazit H. Physically feasible repair of reactive, linear temporal logic-based, high-level tasks[J]. IEEE Transactions on Robotics, 2023, 39(6):4653-4670.
[21] Bisoffi A, Dimarogonas D V. A hybrid barrier certificate approach to satisfy linear temporal logic specifications[C]//Proceedings of 2018 Annual American Control Con ference (ACC). Piscataway, NJ:IEEE, 2018:634-639.
[22] Raman V, Donze A, Maasoumy M, et al. Model predic tive control with signal temporal logic specifications[C]//Proceedings of 53rd IEEE Conference on Decision and Control. Piscataway, NJ:IEEE, 2014:81-87.
[23] Lindemann L, Dimarogonas D V. Control barrier func tions for signal temporal logic tasks[J]. IEEE Control Systems Letters, 2019, 3(1):96-101.
[24] Charitidou M, Dimarogonas D V. Control barrier func tions for disjunctions of signal temporal logic tasks[C]//Proceedings of 2023 European Control Conference (ECC). Piscataway, NJ:IEEE, 2023:1-6.
[25] Yao Y H, Sun J T, Zhang Y. Multitask synthesis of hy brid systems via temporal logic[J]. IEEE Transactions on Automatic Control, 2023, 68(11):6883-6890.
[26] Alur R, Moarref S, Topcu U. Counter-strategy guided re finement of GR(1) temporal logic specifications[EB/OL]. (2013-08-19). http://arxiv.org/abs/1308.4113.
[27] Moarref S, Kress-Gazit H. Decentralized control of robot ic swarms from high-level temporal logic specifications[C]//Proceedings of International Symposium on MultiRobot and Multi-Agent Systems (MRS). Piscataway, NJ:IEEE, 2017:17-23.
[28] Bhatia A, Kavraki L E, Vardi M Y. Motion planning with hybrid dynamics and temporal goals[C]//Proceed ings of 49th IEEE Conference on Decision and Control (CDC). Piscataway, NJ:IEEE, 2010:1108-1115.
[29] Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transac tions on Automatic Control, 2012, 57(8):2106-2110.
[30] Wongpiromsarn T, Topcu U, Murray R M. Receding hori zon control for temporal logic specifications[C]//Proceed ings of the 13th ACM International Conference on Hy brid Systems:Computation and Control. New York:ACM, 2010:101-110.
[31] Fainekos G E. Revising temporal logic specifications for motion planning[J]. Proceedings-IEEE International Conference on Robotics and Automation, 2011:40-45.
[32] Medina Ayala A I, Andersson S B, Belta C. Temporal logic motion planning in unknown environments[C]//Pro ceedings of IEEE/RSJ International Conference on Intel ligent Robots and Systems. Piscataway, NJ:IEEE, 2013:5279-5284.
[33] Lindemann L, Dimarogonas D V. Barrier function based collaborative control of multiple robots under signal tem poral logic tasks[J]. IEEE Transactions on Control of Network Systems, 2020, 7(4):1916-1928.
[34] Sharifi M, Dimarogonas D V. Fixed-time convergent con trol barrier functions for coupled multi-agent systems under STL tasks[C]//Proceedings of 2021 European Con trol Conference (ECC). Piscataway, NJ:IEEE, 2021:793-798.
[35] Chen F, Dimarogonas D V. Leader-follower formation control with prescribed performance guarantees[J]. IEEE Transactions on Control of Network Systems, 2021, 8(1):450-461.
[36] Li L, Chen Z Y, Wang H, et al. Fast task allocation of heterogeneous robots with temporal logic and inter-task constraints[J]. IEEE Robotics and Automation Letters, 2023, 8(8):4991-4998.
[37] Xu N, Peng T, Liu D W, et al. Temporal logic control synthesis for distributed multi-agent cooperative tasking[J]. Journal of Physics:Conference Series, 2022, 2216(1):012061.
[38] Banks C, Wilson S, Coogan S, et al. Multi-agent task al location using cross-entropy temporal logic optimization[C]//Proceedings of IEEE International Conference on Robotics and Automation(ICRA). Piscataway, NJ:IEEE, 2020:7712-7718.
[39] Charitidou M, Dimarogonas D V. Signal temporal logic task decomposition via convex optimization[J]. IEEE Control Systems Letters, 2022, 6:1238-1243.
[40] Sharifi M, Dimarogonas D V. Higher order barrier certifi cates for leader-follower multiagent systems[J]. IEEE Transactions on Control of Network Systems, 2023, 10(2):900-911.
[41] Zheng Y W, Lai A W, Yu X, et al. Early-awareness col lision avoidance in optimal multi-agent path planning with temporal logic specifications[J]. CAA Journal of Au tomatica Sinica, 2023, 10(5):1346-1348.
[42] Pant Y V, Yin H, Arcak M, et al. Co-design of control and planning for multi-rotor UAVs with signal temporal logic specifications[C]//Proceedings of 2021 American Control Conference (ACC). Piscataway, NJ:IEEE, 2021:4209-4216.
[43] Gilpin Y, Kurtz V, Lin H. A smooth robustness measure of signal temporal logic for symbolic control[J]. IEEE Control Systems Letters, 2021, 5(1):241-246.
[44] Pant Y V, Abbas H, Mangharam R. Smooth operator:Control using the smooth robustness of temporal logic[C]//Proceedings of IEEE Conference on Control Tech nology and Applications (CCTA). Piscataway, NJ:IEEE, 2017:1235-1240.
[45] Sadraddini S, Belta C. Robust temporal logic model pre dictive control[C]//Proceedings of 201553rd Annual Al lerton Conference on Communication, Control, and Com puting (Allerton). New York:ACM, 2015:772-779.
[46] Chen F, Dimarogonas D V. Funnel-based cooperative control of leader-follower multi-agent systems under sig nal temporal logic specifications[C]//Proceedings of 2022 European Control Conference (ECC). Piscataway, NJ:IEEE, 2022:906-911.
[47] Donzé A, Maler O. Robust satisfaction of temporal logic over real-valued signals[M]//Lecture Notes in Computer Science. Berlin, Heidelberg:Springer Berlin Heidelberg, 2010:92-106.
[48] Mehdipour N, Vasile C I, Belta C. Arithmetic-geometric mean robustness for control from signal temporal logic specifications[C]//Proceedings of 2019 American Control Conference (ACC). Piscataway, NJ:IEEE, 2019:1690-1695.
[49] Xu Z, Deng Y, Julius A. Robust temporal logic inference for hybrid system observation-an application on occu pancy detection of smart buildings[C]//Proceedings of 2018 Annual American Control Conference (ACC). Pis cataway, NJ:IEEE, 2018:610-615.
[50] Bisoffi A, Dimarogonas D V. Satisfaction of linear tempo ral logic specifications through recurrence tools for hy brid systems[J]. IEEE Transactions on Automatic Con trol, 2021, 66(2):818-825.
[51] Zhou X Y, Yang T G, Zou Y Y, et al. Multiple subformu lae cooperative control for multiagent systems under con flicting signal temporal logic tasks[J]. IEEE Transac tions on Industrial Electronics, 2023, 70(9):9357-9367.
[52] Kantaros Y, Zavlanos M M. STyLuS*:A temporal logic optimal control synthesis algorithm for large-scale multi-robot systems[J]. The International Journal of Ro botics Research, 2020, 39(7):812-836.
[53] Sewlia M, Verginis C K, Dimarogonas D V. MAPS2:Multi-robot anytime motion planning under signal tem poral logic specifications[EB/OL]. (2023-09-11). https://arxiv.org/pdf/2309.05632.
[54] Muniraj D, Vamvoudakis K G, Farhood M. Enforcing sig nal temporal logic specifications in multi-agent adver sarial environments:A deep Q-learning approach[C]//Proceedings of IEEE Conference on Decision and Con trol (CDC). Piscataway, NJ:IEEE, 2018:4141-4146.
[55] Ničković D, Piterman N. From mtl to deterministic timed automata[M]//Lecture Notes in Computer Science. Berlin, Heidelberg:Springer Berlin Heidelberg, 2010:152-167.
[56] Dokhanchi A, Hoxha B, Tuncali C E, et al. An efficient algorithm for monitoring practical TPTL specifications[C]//Proceedings of ACM/IEEE International Conference on Formal Methods and Models for System Design (ME MOCODE). Piscataway, NJ:IEEE, 2016:184-193.
[57] Ghorbel B, Prabhu V S. Quantitative robustness for sig nal temporal logic with time-freeze quantifiers[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(12):4436-4449.
[58] Vasile C I, Aksaray D, Belta C. Time window temporal logic[J]. Theoretical Computer Science, 2017, 691:27-54.
[59] Sahin Y E, Nilsson P, Ozay N. Multirobot coordination with counting temporal logics[J]. IEEE Transactions on Robotics, 2020, 36(4):1189-1206.
[60] 田戴荧, 方浩, 杨庆凯. 信号时序逻辑约束下基于终 点回溯的高效规划[J]. 无人系统技术, 2021, 4(1):44-50.
[61] Shang C S, Fang H, Yang Q K, et al. Distributed hierar chical shared control for flexible multirobot maneuver through dense undetectable obstacles[J]. IEEE Transac tions on Cybernetics, 2023, 53(5):2930-2943.