专题:培育新质生产力 助力高水平科技自立自强

涡旋波超表面研究现状与应用进展

  • 司黎明 ,
  • 陈璐璐 ,
  • 孙厚军 ,
  • 吕昕
展开
  • 1. 北京理工大学集成电路与电子学院, 北京 100081;
    2. 毫米波与太赫兹技术北京市重点实验室, 北京 100081;
    3. 北京理工大学唐山研究院, 唐山 063000
司黎明,副教授,研究方向为电磁场与微波技术,电子信箱:lms@bit.edu.cn

收稿日期: 2024-02-01

  修回日期: 2024-03-28

  网络出版日期: 2024-07-09

基金资助

国家重点研发计划项目(2022YFF0604801);国家自然科学基金项目(62271056,62171186,62201037);北京市自然科学基金-海淀原始创新联合基金项目(L222042);教育部供需对接就业育人项目——重点领域校企合作项目(20230101577);教育部产学合作协同育人项目(220802936304151,221003880110032);高等学校学科科研创新引智计划项目(B14010)

The research status and application progress of orbital angular momentum wave metasurface

  • SI Liming ,
  • CHEN Lulu ,
  • SUN Houjun ,
  • Lü Xin
Expand
  • 1. School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Key Laboratory of Millimeter Wave and Terahertz Technigues, Beijing 100081, China;
    3. Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China

Received date: 2024-02-01

  Revised date: 2024-03-28

  Online published: 2024-07-09

摘要

涡旋波超表面以其独特的电磁波操控能力和轨道角动量(OAM)特性,为电磁波的精准调控和应用提供了新的自由度。阐述了涡旋波的基本理论,包括其产生的原理及携带的轨道角动量的特性。介绍了涡旋波超表面的两大类型——反射型和透射型超表面,总结了涡旋波测量技术,为评估涡旋波超表面的性能提供了科学有效的方法。进而介绍了涡旋波超表面在提高无线通信系统的网络空间安全、数据传输容量、雷达系统的目标探测能力以及全息成像技术的成像质量等方面的应用。对涡旋波超表面的未来发展方向进行了展望,包括高阶多模式OAM波的研究、远距离传输中波束发散问题的解决、可重构涡旋波超表面的设计、OAM隐秘信号传输以及多通道复用技术的开发等,为网络空间安全的建设提供支撑,为无线通信、雷达探测以及光学成像等领域提供更加高效、灵活的技术解决方案。

本文引用格式

司黎明 , 陈璐璐 , 孙厚军 , 吕昕 . 涡旋波超表面研究现状与应用进展[J]. 科技导报, 2024 , 42(12) : 107 -124 . DOI: 10.3981/j.issn.1000-7857.2024.02.00240

Abstract

With the advancement of radio technology, there is a growing demand for high-precision electromagnetic wavefront manipulation. Vortex electromagnetic wave technology and its applications have emerged as an international academic frontier and a research hotspot. With its unique ability to manipulate the electromagnetic waves and characteristics of orbital angular momentum (OAM), vortex wave metasurface provides a new degree of freedom for precison modulation and application of electromagnetic waves. This paper first reviewed the fundamental theory of the vortex wave, including its generating principles and the characteristics of orbital angular momentum which it has carried. Then it introduced the two primary categories of vortex wave metasurfaces: reflective and transmissive metasurfaces. Subsequently, it summarized the measurement technology for vortex waves, providing a scientific and effective approach to evaluate the performance of vortex wave metasurfaces. The paper also discussed the applications of vortex wave metasurfaces in the fields, including to improve the cyberspace security and the data transmission capacity for the wireless communication systems, the target detection capabilities of radar systems, and the imaging quality of holographic imaging technology. Finally, it outlines future development directions for vortex wave metasurfaces, including research of high-order multi-mode OAM waves, solution of the beam divergence in long-distance transmission, design of reconfigurable vortex wave metasurfaces, development of OAM covert signal transmission and multi-channel multiplexing technology, to strengthen the security of cyber space and provide more efficient and flexible technical solutions in the fields of wireless communications, radar detection, optical imaging, and etc.

参考文献

[1] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities:Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.
[2] Mohammadi S M, Daldorff L K S, Bergman J E S, et al. Orbital angular momentum in radio-A system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2):565-572.
[3] Yang H, Zheng S, Zhang H, et al. A THz-OAM wireless communication system based on transmissive metasurface[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(5):4194-4203.
[4] Liu K, Wang H, Liu H, et al. Orbital angular momentum imaging based on waveform diversity and rotational array[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(6):2714-2720.
[5] Ren H, Fang X, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 2020, 15(11):948-955.
[6] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review, 1992, 45(11):8185-8189.
[7] Lian Y, Yu Y, Han S, et al. OAM beams generation technology in optical fiber:A review[J]. IEEE Sensors Journal, 2022, 22(5):3828-3843.
[8] Huang S, Miao Z, He C, et al. Composite vortex beams by coaxial superposition of Laguerre-Gaussian beams[J]. Optics and Lasers in Engineering, 2016, 78:132-139.
[9] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7):488-496.
[10] Sroor H, Huang Y W, Sephton B, et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nature Photonics, 2020, 14(8):498-503.
[11] Tubull G A, Robertson D A, Smith G, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127:183-188.
[12] Liu Q, Chen Z N, Liu Y, et al. Circular polarization and mode reconfigurable wideband orbital angular momentum patch array antenna[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4):1796-1804.
[13] A Saraereh O. Design and performance evaluation of OAM-antennas:A comparative review[J]. IEEE Access, 2023, 11:27992-28013.
[14] Chen Y, Zheng S, Li Y, et al. A Flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15:1156-1158.
[15] Rubano A, Cardano F, Piccirillo B, et al. Q-plate technology:A progress review[J]. Journal of the Optical Society of America B, 2019, 36(5):D70.
[16] Wang X, Nie Z, Liang Y, et al. Recent advances on optical vortex generation[J]. Nanophotonics, 2018, 7(9):1533-1556.
[17] Chen R, Zhou H, Moretti M, et al. Orbital angular momentum waves:Generation, detection, and emerging applications[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2):840-868.
[18] Trichili A, Park K H, Zghal M, et al. Communicating using spatial mode multiplexing:Potentials, challenges, and perspectives[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4):3175-3203.
[19] Cheng G, Si L, Shen Q, et al. Transmissive Pancharatnam-Berry metasurfaces with stable amplitude and precise phase modulations using dartboard discretization configuration[J]. Optics Express, 2023, 31(19):30815.
[20] Huang L, Chen X, Mu H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11):5750-5755.
[21] Li F, Yin X, Deng J Y. Wideband reflective metasurface for independent control of mode and circular polarization of orbital angular momentum[J]. Optics Express, 2023, 31(26):43975.
[22] Jiang Y, Liu L, Li S, et al. Highly efficient decoupled triplechannel OAM generation with a single-layer shared aperture reflective metasurface[J]. Advanced Optical Materials, 2023, 11(3):2202071.
[23] Li N, Zheng S, Yang H, et al. A broadband dual-polarized reflective metasurface for THz OAM communication[J]. IEEE transactions on microwave theory and techniques, 2024, 2(72):1302-1311.
[24] Huang H, Wang J. Switchable terahertz orbital angular momentum bessel beams based on spin-decoupled multifunctional reflective metasurfaces[J]. Optics Express, 2023, 31(21):34855.
[25] Bai X, Zhang F, Sun L, et al. Dynamic millimeter-wave OAM beam generation through programmable metasurface[J]. Nanophotonics, 2022, 11(7):1389-1399.
[26] Liu T, Li W, Meng Y, et al. Six-mode orbital angular momentum generator enabled by helicity assisted full space metasurface with flexible manipulation of phase, polarization, and spatial information[J]. Advanced Optical Materials, 2022, 10(8):2102638.
[27] Yuan Y, Zhang K, Ratni B, et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]. Nature Communications, 2020, 11(1):4186.
[28] Xue C, Zhao H, Li T, et al. Efficient generation of a dual-polarized vortex wave with an ultrathin Huygens' metasurface[J]. Optics Express, 2022, 30(21):39175.
[29] Kou N, Yu S, Li L. Generation of high-order bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain[J]. Applied Physics Express, 2017, 10(1):016701.
[30] Yang Y, Zhu Y, Xie W, et al. High-efficiency ultrathin metasurfaces with simultaneous control of complete phase, amplitude, and polarization[J]. Optics Express, 2023, 31(2):3134.
[31] Uchida M, Tonomura A. Generation of electron beams carrying orbital angular momentum[J]. Nature, 2010, 464(7289):737-739.
[32] Kotlyar V V, Khonina S N, Kovalev A A, et al. Diffraction of a plane, finite-radius wave by a spiral phase plate[J]. Optics Letters, 2006, 31(11):1597.
[33] Mohammadi S M, Daldorff L K S, Forozesh K, et al. Orbital angular momentum in radio:Measurement methods:OAM in radio-measurement methods[J]. Radio Science, 2010, 45(4):RS4007.
[34] Xie M, Gao X, Zhao M, et al. Mode measurement of a dual-mode radio frequency orbital angular momentum beam by circular phase gradient method[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16:1143-1146.
[35] Fan J, Chen R, Long W X, et al. Radio-frequency multimode OAM detection based on UCA samples learning[C]//2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications. Lucca, Italy:IEEE, 2021:56-60.
[36] Hu Y, Zheng S, Zhang Z, et al. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme[J]. IET Microwaves, Antennas & Propagation, 2016, 10(10):1043-1047.
[37] Chen M L N, Jiang L J, Sha W E I. Detection of orbital angular momentum with metasurface at microwave band[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1):110-113.
[38] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 2002, 88(25):257901.
[39] Zhang N, Yuan X C, Burge R E. Extending the detection range of optical vortices by dammann vortex gratings[J]. Optics Letters, 2010, 35(20):3495.
[40] Fu S, Zhang S, Wang T, et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices[J]. Optics Express, 2016, 24(6):6240.
[41] Zhou H L, Fu D Z, Dong J J, et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect[J]. Light:Science & Applications, 2016, 6(4):16251-16252.
[42] Fu S. Universal orbital angular momentum spectrum analyzer for beams[J]. PhotoniX, 2020, 1(1):19.
[43] Yang D, Yang Z, Zhang Y. Wavefront-splitting interferometer based on orbital angular momentum beams[J]. Optics Express, 2023, 31(18):28954.
[44] Rasouli S, Fathollazade S, Amiri P. Simple, efficient and reliable characterization of Laguerre-Gaussian beams with non-zero radial indices in diffraction from an amplitude parabolic-line linear grating[J]. Optics Express, 2021, 29(19):29661.
[45] Li F, Ding H, Meng Z, et al. Measuring high-order optical orbital angular momentum with a petal-like zone plate[J]. IEEE Photonics Technology Letters, 2022, 34(2):125-128.
[46] Weng Y, Pan Z. Orbital angular momentum based sensing and their applications:A review[J]. Journal of Lightwave Technology, 2023, 41(7):2007-2016.
[47] Huang Z, Wang P, Liu J, et al. All-optical signal processing of vortex beams with diffractive deep neural networks[J]. Physical Review Applied, 2021, 15(1):014037.
[48] Yang H, Zheng S, Zhang H, et al. A reflective metasurface for OAM and polarization multiplexing communication in the w-band[J]. IEEE Antennas and Wireless Propagation Letters, 2023(1):1-5.
[49] Mai Q, Wang C, Wang X, et al. Metasurface based optical orbital angular momentum multiplexing for 100 GHz radio over fiber communication[J]. Journal of Lightwave Technology, 2021, 39(19):6159-6166.
[50] Zhang F, Song Q, Yang G M, et al. Generation of wideband vortex beam with different OAM modes using third-order meta-frequency selective surface[J]. Optics Express, 2019, 27(24):34864.
[51] Han J, Li L, Yi H, et al. 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface[J]. Optical Materials Express, 2018, 8(11):3470.
[52] Liu B, Chu H, Giddens H, et al. Rotational doppler effect of spinning metasurface in radar system[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. Atlanta, GA, USA:IEEE, 2019:1967-1968.
[53] Liu K, Liu H, Sha W E I, et al. Backward scattering of electrically large standard objects illuminated by OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7):1167-1171.
[54] Zeng Y, Wang Y, Chen Z, et al. Two-dimensional OAM radar imaging using uniform circular antenna arrays[C]//2020 14th European Conference on Antennas and Propagation. Copenhagen, Denmark:IEEE, 2020:1-4.
[55] Liang J, Chen Y, Zhang Q, et al. Three-dimensional imaging of vortex electromagnetic wave radar with integer and fractional order OAM modes[J]. Remote Sensing, 2023, 15(11):2903.
[56] Liu Q, Chen H, Yan Y, et al. RCS reduction metasurface based on orbital angular momentum[J]. Results in Physics, 2023, 53:107008.
[57] Yang R, Wan S, Shi Y, et al. Immersive tuning the guided waves for multifunctional on chip metaoptics[J]. Laser & Photonics Reviews, 2022, 16(8):2200127.
[58] Maurer C, Jesacher A, Bernet S, et al. What spatial light modulators can do for optical microscopy[J]. Laser & Photonics Reviews, 2011, 5(1):81-101.
[59] Li Z, Rukhlenko I D, Zhu W. Microwave metasurface hologram for holographic imaging and its data encryption applications[J]. Journal of Optics, 2022, 24(11):113001.
[60] Willner A E, Pang K, Song H, et al. Orbital angular momentum of light for communications[J]. Applied Physics Reviews, 2021, 8(4):041312.
[61] Fang X, Yang H, Yao W, et al. High-dimensional orbital angular momentum multiplexing nonlinear holography[J]. Advanced Photonics, 2021, 3(1):015001.
[62] Wang F, Zhang X, Xiong R, et al. Angular multiplexation of partial helical phase modes in orbital angular momentum holography[J]. Optics Express, 2022, 30(7):11110.
[63] Wang Y, Yao Z, Cui Z, et al. Orbital angular momentum multiplexing holography based on multiple polarization channel metasurface[J]. Nanophotonics, 2023, 12(23):4339-4349.
[64] Wu G, Si L, Xu H, et al. Phase-to-pattern inverse design for a fast realization of a functional metasurface by combining a deep neural network and a genetic algorithm[J]. Optics Express, 2022, 30(25):45612.
文章导航

/