[1] 沈义俊, 陈敏芳, 杜燕连, 等. 深海矿物资源开发系统关键力学问题及技术挑战[J]. 力学与实践, 2022, 44(5):1005-1020.
[2] Skålvik A M, Saetre C, Frøysa K E, et al. Challenges, limitations, and measurement strategies to ensure data quality in deep-sea sensors[J]. Frontiers in Marine Science, 2023, 10:1152236.
[3] Sartore C, Campos R, Quintana J, et al. Control and perception framework for deep sea mining exploration[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE, 2019:6348-6353.
[4] Sun K, Cui W C, Chen C. Review of underwater sensing technologies and applications[J]. Sensors, 2021, 21(23):7849.
[5] Liu C H, Guo J J, Tian Y, et al. Development and field tests of a deep-sea laser-induced breakdown spectroscopy (LIBS) system for solid sample analysis in seawater[J]. Sensors, 2020, 20(24):7341.
[6] Leng D X, Shao S, Xie Y C, et al. A brief review of recent progress on deep sea mining vehicle[J]. Ocean Engineering, 2021, 228:108565.
[7] Ben-Ari M, Mondada F. Elements of Robotics[M]. Cham:Springer International Publishing, 2018.
[8] 薛乃耀. 作业型水下机器人运动控制系统研究[D]. 广州:华南理工大学, 2020.
[9] Fossen T I. Handbook of marine craft hydrodynamics and motion control[M]. New York:Wiley, 2011.
[10] Eidsvik O A, Schjølberg I. Time domain modeling of rov umbilical using beam equations[J]. IFAC-PapersOnLine, 2016, 49(23):452-457.
[11] 习刚, 杨兴满, 陈卫东. ROV同步航行水下缆索运动仿真[J]. 舰船科学技术, 2011, 33(5):24-27.
[12] Huo X X, Ge T, Wang X Y. Horizontal path-following control for deep-sea work-class ROVs based on a fuzzy logic system[J]. Ships and Offshore Structures, 2018, 13(6):637-648.
[13] 郑男. 基于深度特征的海底矿物图像分割算法研究[D]. 北京:中央民族大学, 2019.
[14] Zhou H Y, Jiao P C, Lin Y. Emerging deep-sea smart composites:Advent, performance, and future trends[J]. Materials, 2022, 15(18):6469.
[15] 戴瑜. 履带式集矿机海底行走的单刚体建模研究与仿真分析[D]. 长沙:中南大学, 2010.
[16] 阳宁, 陈光国. 深海矿产资源开采技术的现状综述[J]. 矿山机械, 2010, 38(10):4-9.
[17] Welling C G. An advanced design deep sea mining system[C]//Proceedings of All Days. OTC, 1981.
[18] Liu S J, Yang N, Han Q J. Research and development of deep sea mining technology in China[C]//Proceedings of ASME 201029th International Conference on Ocean, Offshore and Arctic Engineering, 2010:163-169.
[19] Halkyard J. Technology for mining cobalt rich manganese crusts from seamounts[C]//Proceedings of OCEANS '85-Ocean Engineering and the Environment. Piscataway, NJ:IEEE, 1985:352-374.
[20] 夏毅敏. 深海钴结壳螺旋切削采集过程仿真和螺旋采集头工作参数优化研究[D]. 长沙:中南大学, 2006.
[21] Skarpelis N, Argyraki A. Geology and origin of supergene ore at the lavrion Pb-Ag-Zn deposit, Attica, Greece[J]. Resource Geology, 2009, 59(1):1-14.
[22] Crowhurst P, Lowe J. Exploration and resource drilling of seafloor massive sulfide (SMS) deposits in the Bismarck Sea, Papua New Guinea[C]//Proceedings of OCEANS'11 MTS/IEEE KONA. Piscataway, NJ:IEEE, 2011:1-6.
[23] Vladimirs R, Konstantins S. Smarthub for supervising system for resource exploration and pollution control in deep-water and coastal areas based on ICT technologies[J]. Marine Economics and Management, 2023, 6(1):23-34.
[24] Yang G Z, Bellingham J, Dupont P E, et al. The grand challenges of Science Robotics[J]. Science Robotics, 2018, 3(14):eaar7650.
[25] Teague J, Allen M J, Scott T B. The potential of lowcost ROV for use in deep-sea mineral, ore prospecting and monitoring[J]. Ocean Engineering, 2018, 147:333-339.
[26] Parra Rubio A, Fan D X, Jenett B, et al. Modular morphing lattices for large-scale underwater continuum robotic structures[J]. Soft Robotics, 2023, 10(4):724-736.
[27] Nain M, Goyal N. Localization techniques in underwater wireless sensor network[C]//Proceedings of International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). Piscataway, NJ:IEEE, 2021:747-751.
[28] Sun D J, Zheng C E, Cui H Y, et al. Developing status and some cutting-edge issues of underwater sensor network localization technology[J]. Scientia Sinica Informationis, 2018, 48(9):1121-1136.
[29] Qiao G, Babar Z, Ma L, et al. MIMO-OFDM underwater acoustic communication systems:A review[J]. Physical Communication, 2017, 23:56-64.
[30] Sahoo A, Dwivedy S K, Robi P S. Advancements in the field of autonomous underwater vehicle[J]. Ocean Engineering, 2019, 181:145-160.
[31] 李守军, 包更生, 吴水根. 水声定位技术的发展现状与展望[J]. 海洋技术, 2005(1):130-135.
[32] 石桂欣, 鄢社锋, 吴永清. 一种基于纯方位的虚拟长基线定位算法[C]//中国声学学会2017年全国声学学术会议论文集. 北京:中国声学学会, 2017:389-390.
[33] 张涛, 夏茂栋, 张佳宇, 等. 水下导航定位技术综述[J]. 全球定位系统, 2022, 47(4):1-16.
[34] 邸凯昌, 万文辉, 赵红颖, 等. 视觉SLAM技术的进展与应用[J]. 测绘学报, 2018, 47(6):770-779.
[35] Dong L L, Zhang W D, Xu W H. Underwater image enhancement via integrated RGB and LAB color models[J]. Signal Processing:Image Communication, 2022, 104:116684.
[36] Cherian A K, Poovammal E, Philip N S, et al. Deep learning based filtering algorithm for noise removal in underwater images[J]. Water, 2021, 13(19):2742.
[37] Fu X Y, Cao X Y. Underwater image enhancement with global-local networks and compressed-histogram equalization[J]. Signal Processing:Image Communication, 2020, 86:115892.
[38] Han P L, Liu F, Yang K, et al. Active underwater descattering and image recovery[J]. Applied Optics, 2017, 56(23):6631-6638.
[39] Li C, Guo C, Ren W, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE transactions on image processing, 2019, 29:4376-4389.
[40] Zhang W D, Jin S L, Zhuang P X, et al. Underwater image enhancement via piecewise color correction and dual prior optimized contrast enhancement[J]. IEEE Signal Processing Letters, 2023, 30:229-233.
[41] Raveendran S, Patil M D, Birajdar G K. Underwater image enhancement:A comprehensive review, recent trends, challenges and applications[J]. Artificial Intelligence Review, 2021, 54(7):5413-5467.
[42] Kerstens R, Laurijssen D, Schouten G, et al. 3D point cloud data acquisition using a synchronized In-air imaging sonar sensor network[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE, 2019:5855-5861.
[43] Kim B, Cho H, Joe H, et al. Optimal strategy for seabed 3D mapping of AUV based on imaging sonar[C]//Proceedings of OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). Piscataway, NJ:IEEE, 2018:1-5.
[44] Li S Y, Su D P, Yang F L, et al. Bathymetric LiDAR and multibeam echo-sounding data registration methodology employing a point cloud model[J]. Applied Ocean Research, 2022, 123:103147.
[45] Xu W X, Zhang F, Jiang T, et al. Feature curve-based registration for airborne LiDAR bathymetry point clouds[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112:102883.
[46] Huang T X, Liu Y. 3D point cloud geometry compression on deep learning[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York:ACM, 2019:890-898.
[47] Palomer A, Ridao P, Ribas D. Inspection of an underwater structure using point-cloud SLAM with an AUV and a laser scanner[J]. Journal of Field Robotics, 2019, 36(8):1333-1344.
[48] Li X, Xue F, Chen C, et al. Graph attention-based deep neural network for 3D point cloud processing[C]//Proceedings of IEEE International Conference on Multimedia and Expo (ICME). Piscataway, NJ:IEEE, 2021:1-6.
[49] Wang X X, Gao J, Feng L. Recognition and 3D pose estimation for underwater objects using deep convolutional neural network and point cloud registration[C]//Proceedings of International Conference on System Science and Engineering (ICSSE). Piscataway, NJ:IEEE, 2020:1-6.
[50] Afham M, Dissanayake I, Dissanayake D, et al. CrossPoint:Self-supervised cross-modal contrastive learning for 3D point cloud understanding[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ:IEEE, 2022:9892-9902.
[51] Ambati P, Raj K M, Joshuva A. A review on pipeline inspection robot[C]//AIP Conference Proceedings. Chennai:AIP Publishing, 2020, 2311:60002.
[52] Zhao X, Wang X, Du Z. Research on detection method for the leakage of underwater pipeline by YOLOv3[C]//2020 IEEE international conference on mechatronics and automation (ICMA). Beijing:IEEE, 2020:637-642.
[53] Pasha M A, Khan T M. A pipeline inspection gauge based on low cost magnetic flux leakage sensing magnetometers for non-destructive testing of pipelines[C]//Proceedings of International Conference on Emerging Technologies (ICET). Piscataway, NJ:IEEE, 2016:1-5.
[54] Jin T, Que P W, Tao Z S. Development of magnetic flux leakage pipe inspection robot using hall sensors[C]//Proceedings of Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004. Piscataway, NJ:IEEE, 2004:325-329.
[55] Safizadeh M, Hasanian M. Gas pipeline corrosion mapping using pulsed eddy current technique[J]. International Journal of Advanced Design and Manufacturing Technology, 2011, 5(1):11-18.
[56] Mazreah A A, Alnaimi F B I, Sahari K S M. Novel design for PIG to eliminate the effect of hydraulic transients in oil and gas pipelines[J]. Journal of Petroleum Science and Engineering, 2017, 156:250-257.
[57] Kondratiev S I, Dantsevich I M, Tarasenko A A. Pipeline monitoring technology in Nord Stream 2[J]. IOP Conference Series:Earth and Environmental Science, 2021, 872(1):012021.
[58] Liljeback P, Mills R. Eelume:A flexible and subsea resident IMR vehicle[C]//Proceedings of OCEANS 2017-Aberdeen. Piscataway, NJ:IEEE, 2017:1-4.
[59] Jawhar I, Mohamed N, Al-Jaroodi J, et al. An architecture for using autonomous underwater vehicles in wireless sensor networks for underwater pipeline monitoring[J]. IEEE Transactions on Industrial Informatics, 2019, 15(3):1329-1340.
[60] Gothi A, Patel P, Pandya M. Underwater robotics[M]//ICT with Intelligent Applications. Singapore:Springer Singapore, 2021:445-453.