专题:培育新质生产力 助力高水平科技自立自强

多组学大数据与医学发展

  • 刘斯洋 ,
  • 林星辰 ,
  • 程丝 ,
  • 王超龙 ,
  • 李昊
展开
  • 1. 中山大学公共卫生学院(深圳), 深圳 518107;
    2. 首都医科大学附属北京天坛医院, 国家神经系统疾病临床医学研究中心, 北京 100070;
    3. 华中科技大学公共卫生学院, 武汉 430030
刘斯洋,副教授,研究方向为医学遗传学方法研发与应用,电子信箱:liusy99@mail.sysu.edu.cn;李昊(通信作者),教授,研究方向为临床流行病方法学,电子信箱:lihao@ncrcnd.org.cn

收稿日期: 2024-04-28

  修回日期: 2024-06-11

  网络出版日期: 2024-07-09

基金资助

国家重点研发计划项目(2022YFC2502400)

Multi-omics big data and medical advancements

  • LIU Siyang ,
  • LIN Xingchen ,
  • CHENG Si ,
  • WANG Chaolong ,
  • LI Hao
Expand
  • 1. School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China;
    2. China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China;
    3. School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Received date: 2024-04-28

  Revised date: 2024-06-11

  Online published: 2024-07-09

摘要

多组学技术、队列研究设计、数据科学和机器学习的进步已经开始改变循证医学,为下一代“深度”医学的未来提供了诱人的前景。总结了基因组与基因组修饰测序、转录组与单细胞转录组、蛋白组、代谢组、微生物组、影像组与生物传感器等多组学实验技术和全基因组关联分析、全基因组关联信号解读、多基因风险评分、孟德尔随机化与人工智能算法等大数据分析技术的发展趋势,探讨了这些技术在疾病分型、诊断与预测、药物研发和临床试验设计等方面的临床应用。针对多组学大数据与医学发展面临的挑战,展望了未来队列设计、数据管理与共享、国际合作等发展方向。

本文引用格式

刘斯洋 , 林星辰 , 程丝 , 王超龙 , 李昊 . 多组学大数据与医学发展[J]. 科技导报, 2024 , 42(12) : 51 -74 . DOI: 10.3981/j.issn.1000-7857.2024.05.00538

Abstract

Advances in multi-omics technologies, cohort study design, data science, and machine learning are transforming evidence-based medicine, offering a promising outlook for the future of next-generation "deep" medicine. We hereby summarized the development trends in multi-omics experimental techniques, including genomics and epigenomics sequencing, transcriptomics and single-cell transcriptomics, proteomics, metabolomics, microbiomics, imaging, and biosensors. Furthermore, we introduced progress in big data analysis methods such as genome-wide association studies, interpretation of genome-wide association signals, polygenic risk scoring, Mendelian randomization, and artificial intelligence algorithms. Additionally, we discussed the clinical applications of these technologies in disease subtyping, diagnosis and prediction, drug development, and clinical trial design. Finally, we discussed the challenges faced and explored future directions in cohort study design, data management and sharing, and the enhancement of international collaboration.

参考文献

[1] Vissers L E L M, de Vries B B A, Osoegawa K, et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities[J]. American Journal of Human Genetics, 2003, 73(6):1261-1270.
[2] Consortium I H. The international HapMap Project[J]. Nature, 2003, 426(6968):789-796.
[3] Frazer K A, Ballinger D G, Cox D R, et al. A second generation human haplotype map of over 3.1 million SNPs[J]. Nature, 2007, 449(7164):851-861.
[4] Lander E S, Linton L M, Birren B, et al. Initial sequencing and analysis of the human genome[J]. Nature, 2001, 409(6822):860-921.
[5] Wheeler D A, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing[J]. Nature, 2008, 452(7189):872-876.
[6] Ng S B, Turner E H, Robertson P D, et al. Targeted capture and massively parallel sequencing of 12 human exomes[J]. Nature, 2009, 461(7261):272-276.
[7] Pennisi E. A $100 genome? New DNA sequencers could be a 'game changer' for biology, medicine[EB/OL].[2022-03-01]. https://www.science.org/content/article/100-genome-new-dna-sequencers-could-be-game-changer-biology-medicine.
[8] Wang Y H, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications[J]. Nature Biotechnology, 2021, 39(11):1348-1365.
[9] Patel A P, Wang M X, Ruan Y F, et al. A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease[J]. Nature Medicine, 2023, 29(7):1793-1803.
[10] Cedar H, Bergman Y. Linking DNA methylation and histone modification:Patterns and paradigms[J]. Nature Reviews Genetics, 2009, 10(5):295-304.
[11] Loyfer N, Magenheim J, Peretz A, et al. A DNA methylation atlas of normal human cell types[J]. Nature, 2023, 613(7943):355-364.
[12] Weber M, Davies J J, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells[J]. Nature Genetics, 2005, 37(8):853-862.
[13] Simpson J T, Workman R E, Zuzarte P C, et al. Detecting DNA cytosine methylation using nanopore sequencing[J]. Nature Methods, 2017, 14(4):407-410.
[14] Yousefi P D, Suderman M, Langdon R, et al. DNA methylation-based predictors of health:Applications and statistical considerations[J]. Nature Reviews Genetics, 2022, 23(6):369-383.
[15] Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing[J]. Nature Reviews Genetics, 2018, 19(6):371-384.
[16] Apicella C, Ruano C S M, Méhats C, et al. The role of epigenetics in placental development and the etiology of preeclampsia[J]. International Journal of Molecular Sciences, 2019, 20(11):2837.
[17] Lim U, Song M A. Dietary and lifestyle factors of DNA methylation[J]. Methods in Molecular Biology, 2012, 863:359-376.
[18] Rozek L S, Dolinoy D C, Sartor M A, et al. Epigenetics:Relevance and implications for public health[J]. Annual Review of Public Health, 2014, 35:105-122.
[19] Wang Z, Gerstein M, Snyder M. RNA-Seq:A revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1):57-63.
[20] Byron S A, Van Keuren-Jensen K R, Engelthaler D M,et al. Translating RNA sequencing into clinical diagnostics:Opportunities and challenges[J]. Nature Reviews Genetics, 2016, 17(5):257-271.
[21] Stark R, Grzelak M, Hadfield J. RNA sequencing:The teenage years[J]. Nature Reviews Genetics, 2019, 20(11):631-656.
[22] Sparano J A, Gray R J, Makower D F, et al. Prospective validation of a 21-gene expression assay in breast cancer[J]. The New England Journal of Medicine, 2015, 373(21):2005-2014.
[23] Dear R, Wagstyl K, Seidlitz J, et al. Cortical gene expression architecture links healthy neurodevelopment to the imaging, transcriptomics and genetics of autism and schizophrenia[J]. Nature Neuroscience, 2024, 27(6):1075-1086.
[24] Crist A M, Hinkle K M, Wang X, et al. Transcriptomic analysis to identify genes associated with selective hippocampal vulnerability in Alzheimer's disease[J]. Nature Communications, 2021, 12(1):2311.
[25] de Goede O M, Nachun D C, Ferraro N M, et al. Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease[J]. Cell, 2021, 184(10):2633-2648.e19.
[26] Tang F C, Barbacioru C, Wang Y Z, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nature Methods, 2009, 6(5):377-382.
[27] Stegle O, Teichmann S A, Marioni J C. Computational and analytical challenges in single-cell transcriptomics[J]. Nature Reviews Genetics, 2015, 16(3):133-145.
[28] Regev A, Teichmann S A, Lander E S, et al. The human cell atlas[J]. Elife, 2017, 6:e27041.
[29] Insel T R, Landis S C, Collins F S. Research priorities. The NIH BRAIN initiative[J]. Science, 2013, 340(6133):687-688.
[30] Montoro D T, Haber A L, Biton M, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes[J]. Nature, 2018, 560(7718):319-324.
[31] Young M D, Mitchell T J, Vieira Braga F A, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors[J]. Science, 2018, 361(6402):594-599.
[32] Chen J, Suo S B, Tam P P, et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq[J]. Nature Protocols, 2017, 12(3):566-580.
[33] Lein E, Borm L E, Linnarsson S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing[J]. Science, 2017, 358(6359):64-69.
[34] Karras P, Bordeu I, Pozniak J, et al. A cellular hierarchy in melanoma uncouples growth and metastasis[J]. Nature, 2022, 610(7930):190-198.
[35] Suhre K, McCarthy M I, Schwenk J M. Genetics meets proteomics:Perspectives for large population-based studies[J]. Nature Reviews Genetics, 2021, 22(1):19-37.
[36] Assarsson E, Lundberg M, Holmquist G, et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability[J]. PLoS One, 2014, 9(4):e95192.
[37] Jia J L, Jin J P, Chen Q, et al. Eukaryotic expression, Co-IP and MS identify BMPR-1B protein-protein interaction network[J]. Biological Research, 2020, 53(1):24.
[38] Mann M, Jensen O N. Proteomic analysis of post-translational modifications[J]. Nature Biotechnology, 2003, 21(3):255-261.
[39] Rosenberger G, Liu Y S, Röst H L, et al. Inference and quantification of peptidoforms in large sample cohorts by SWATH-MS[J]. Nature Biotechnology, 2017, 35(8):781-788.
[40] Newgard C B. Metabolomics and metabolic diseases:Where do we stand?[J]. Cell Metabolism, 2017, 25(1):43-56.
[41] Viant M R, Rosenblum E S, Tieerdema R S. NMRbased metabolomics:A powerful approach for characterizing the effects of environmental stressors on organism health[J]. Environmental Science & Technology, 2003, 37(21):4982-4989.
[42] Kennedy A D, Wittmann B M, Evans A M, et al. Metabolomics in the clinic:A review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing[J]. Journal of Mass Spectrometry, 2018, 53(11):1143-1154.
[43] Würtz P, Kangas A J, Soininen P, et al. Quantitative serum nuclear magnetic resonance metabolomics in largescale epidemiology:A primer on-omic technologies[J]. American Journal of Epidemiology, 2017, 186(9):1084-1096.
[44] Tasoglu S. Toilet-based continuous health monitoring using urine[J]. Nature Reviews Urology, 2022, 19(4):219-230.
[45] Wishart D S, Guo A C, Oler E, et al. HMDB 5.0:The human metabolome database for 2022[J]. Nucleic Acids Research, 2022, 50(D1):D622-D631.
[46] Pace N R. A molecular view of microbial diversity and the biosphere[J]. Science, 1997, 276(5313):734-740.
[47] Claesson M J, Wang Q, O'Sullivan O, et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions[J]. Nucleic Acids Research, 2010, 38(22):e200.
[48] Qin J J, Li R Q, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65.
[49] Heinken A, Hertel J, Acharya G, et al. Genome-scale metabolic reconstruction of 7302 human microorganisms for personalized medicine[J]. Nature Biotechnology, 2023, 41(9):1320-1331.
[50] Garza D R, van Verk M C, Huynen M A, et al. Towards predicting the environmental metabolome from metagenomics with a mechanistic model[J]. Nature Microbiology, 2018, 3(4):456-460.
[51] Hattori N, Yamashiro Y. The gut-brain axis[J]. Annals of Nutrition and Metabolism, 2021, 77(Suppl. 2):1-3.
[52] Yap C X, Henders A K, Alvares G A, et al. Autism-related dietary preferences mediate autism-gut microbiome associations[J]. Cell, 2021, 184(24):5916-5931. e17.
[53] Tilg H, Adolph T E, Trauner M. Gut-liver axis:Pathophysiological concepts and clinical implications[J]. Cell Metabolism, 2022, 34(11):1700-1718.
[54] Andoh A, Nishida A. Alteration of the gut microbiome in inflammatory bowel disease[J]. Digestion, 2023, 104(1):16-23.
[55] Nichols R G, Peters J M, Patterson A D. Interplay between the host, the human microbiome, and drug metabolism[J]. Human Genomics, 2019, 13(1):27.
[56] Wilmanski T, Kornilov S A, Diener C, et al. Heterogeneity in statin responses explained by variation in the human gut microbiome[J]. Med, 2022, 3(6):388-405.e6.
[57] Wilmanski T, Rappaport N, Diener C, et al. From taxonomy to metabolic output:What factors define gut microbiome health?[J]. Gut Microbes, 2021, 13(1):1-20.
[58] Abdill R J, Adamowicz E M, Blekhman R. Public human microbiome data are dominated by highly developed countries[J]. PLoS Biology, 2022, 20(2):e3001536.
[59] van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology:The path to the clinic[J]. Nature Medicine, 2021, 27(5):775-784.
[60] Littlejohns T J, Holliday J, Gibson L M, et al. The UK Biobank imaging enhancement of 100, 000 participants:Rationale, data collection, management and future directions[J]. Nature Communications, 2020, 11:2624.
[61] Hamer M, Batty G D. Association of body mass index and waist-to-hip ratio with brain structure:UK Biobank study[J]. Neurology, 2019, 92(6):e594-e600.
[62] Cox S R, Lyall D M, Ritchie S J, et al. Associations between vascular risk factors and brain MRI indices in UK Biobank[J]. European Heart Journal, 2019, 40(28):2290-2300.
[63] Woodbridge S P, Aung N, Paiva J M, et al. Physical activity and left ventricular trabeculation in the UK Biobank community-based cohort study[J]. Heart, 2019, 105(13):990-998.
[64] Jensen M T, Fung K, Aung N, et al. Changes in cardiac morphology and function in individuals with diabetes mellitus:The UK biobank cardiovascular magnetic resonance substudy[J]. Circulation Cardiovascular Imaging, 2019, 12(9):e009476.
[65] Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank[J]. Nature, 2022, 604(7907):697-707.
[66] Guo J, Yu K, Dong S S, et al. Mendelian randomization analyses support causal relationships between brain imaging-derived phenotypes and risk of psychiatric disorders[J]. Nature Neuroscience, 2022, 25(11):1519-1527.
[67] Mayerhoefer M E, Materka A, Langs G, et al. Introduction to radiomics[J]. Journal of Nuclear Medicine, 2020, 61(4):488-495.
[68] Ip J E. Wearable devices for cardiac rhythm diagnosis and management[J]. JAMA, 2019, 321(4):337-338.
[69] Ates H C, Nguyen P Q, Gonzalez-Macia L, et al. Endto-end design of wearable sensors[J]. Nature Reviews Materials, 2022, 7(11):887-907.
[70] Öhman F, Hassenstab J, Berron D, et al. Current advances in digital cognitive assessment for preclinical Alzheimer's disease[J]. Alzheimer's & Dementia:Diagnosis, Assessment & Disease Monitoring, 2021, 13(1):e12217-e12217.
[71] Klein R J, Zeiss C, Chew E Y, et al. Complement factor H polymorphism in age-related macular degeneration[J]. Science, 2005, 308(5720):385-389.
[72] Abdellaoui A, Yengo L, Verweij K J H, et al. 15 years of GWAS discovery:Realizing the promise[J]. American Journal of Human Genetics, 2023, 110(2):179-194.
[73] Sollis E, Mosaku A, Abid A, et al. The NHGRI-EBI GWAS Catalog:Knowledgebase and deposition resource[J]. Nucleic Acids Research, 2023, 51(D1):D977-D985.
[74] Mishra A, Malik R, Hachiya T, et al. Stroke genetics informs drug discovery and risk prediction across ancestries[J]. Nature, 2022, 611(7934):115-123.
[75] Yengo L, Vedantam S, Marouli E, et al. A saturated map of common genetic variants associated with human height[J]. Nature, 2022, 610(7933):704-712.
[76] Liu M Z, Jiang Y, Wedow R, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use[J]. Nature Genetics, 2019, 51(2):237-244.
[77] Lee J J, Wedow R, Okbay A, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals[J]. Nature Genetics, 2018, 50(8):1112-1121.
[78] Evangelou E, Warren H R, Mosen-Ansorena D, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits[J]. Nature Genetics, 2018, 50(10):1412-1425.
[79] Li Y, Sidore C, Kang H M, et al. Low-coverage sequencing:Implications for design of complex trait association studies[J]. Genome Research, 2011, 21(6):940-951.
[80] Huang S J, Liu S Y, Huang M X, et al. The Born in Guangzhou Cohort Study enables generational genetic discoveries[J]. Nature, 2024, 626(7999):565-573.
[81] Liu S Y, Huang S J, Chen F, et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history[J]. Cell, 2018, 175(2):347-359.
[82] Peterson R E, Kuchenbaecker K, Walters R K, et al. Genome-wide association studies in ancestrally diverse populations:Opportunities, methods, pitfalls, and recommendations[J]. Cell, 2019, 179(3):589-603.
[83] Campos A I, Namba S, Lin S C, et al. Boosting the power of genome-wide association studies within and across ancestries by using polygenic scores[J]. Nature Genetics, 2023, 55(10):1769-1776.
[84] Slatkin M. Linkage disequilibrium:Understanding the evolutionary past and mapping the medical future[J]. Nature Reviews Genetics, 2008, 9(6):477-485.
[85] ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414):57-74.
[86] Bulik-Sullivan B, Finucane H K, Anttila V, et al. An atlas of genetic correlations across human diseases and traits[J]. Nature Genetics, 2015, 47(11):1236-1241.
[87] Musunuru K, Strong A, Frank-Kamenetsky M, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus[J]. Nature, 2010, 466(7307):714-719.
[88] Claussnitzer M, Dankel S N, Kim K H, et al. FTO obesity variant circuitry and adipocyte browning in humans[J]. The New England Journal of Medicine, 2015, 373(10):895-907.
[89] Smemo S, Tena J J, Kim K H, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3[J]. Nature, 2014, 507(7492):371-375.
[90] Sekar A, Bialas A R, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4[J]. Nature, 2016, 530(7589):177-183.
[91] Gupta R M, Hadaya J, Trehan A, et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression[J]. Cell, 2017, 170(3):522-533.e15.
[92] Kundaje A, Meuleman W, Ernst J, et al. Integrative analysis of 111 reference human epigenomes[J]. Nature, 2015, 518(7539):317-330.
[93] Farh K K H, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants[J]. Nature, 2015, 518(7539):337-343.
[94] Tansey K E, Cameron D, Hill M J. Genetic risk for Alzheimer's disease is concentrated in specific macrophage and microglial transcriptional networks[J]. Genome Medicine, 2018, 10(1):14.
[95] Battle A, Brown C D, Engelhardt B E, et al. Genetic effects on gene expression across human tissues[J]. Nature, 2017, 550(7675):204-213.
[96] HuBMAP Consortium. The human body at cellular resolution:The NIH Human Biomolecular Atlas Program[J]. Nature, 2019, 574(7777):187-192.
[97] Bulik-Sullivan B K, Loh P R, Finucane H K, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies[J]. Nature Genetics, 2015, 47(3):291-295.
[98] Giambartolomei C, Vukcevic D, Schadt E E, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics[J]. PLoS Genetics, 2014, 10(5):e1004383.
[99] Patwardhan R P, Lee C, Litvin O, et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis[J]. Nature Biotechnology, 2009, 27(12):1173-1175.
[100] Potting C, Crochemore C, Moretti F, et al. Genomewide CRISPR screen for PARKIN regulators reveals transcriptional repression as a determinant of mitophagy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(2):E180-E189.
[101] Fulco C P, Nasser J, Jones T R, et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations[J]. Nature Genetics, 2019, 51(12):1664-1669.
[102] Komor A C, Kim Y B, Packer M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424.
[103] Findlay G M, Daza R M, Martin B, et al. Accurate classification of BRCA1 variants with saturation genome editing[J]. Nature, 2018, 562(7726):217-222.
[104] Feldman D, Singh A, Schmid-Burgk J L, et al. Optical pooled screens in human cells[J]. Cell, 2019, 179(3):787-799.
[105] Dixit A, Parnas O, Li B Y, et al. Perturb-seq:Dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens[J]. Cell, 2016, 167(7):1853-1866.
[106] Datlinger P, Rendeiro A F, Schmidl C, et al. Pooled CRISPR screening with single-cell transcriptome readout[J]. Nature Methods, 2017, 14(3):297-301.
[107] Choi S W, Mak T S H, O'Reilly P F. Tutorial:A guide to performing polygenic risk score analyses[J]. Nature Protocols, 2020, 15(9):2759-2772.
[108] Torkamani A, Wineinger N E, Topol E J. The personal and clinical utility of polygenic risk scores[J]. Nature Reviews Genetics, 2018, 19(9):581-590.
[109] Zhang H Y, Zhan J N, Jin J, et al. A new method for multiancestry polygenic prediction improves performance across diverse populations[J]. Nature Genetics, 2023, 55(10):1757-1768.
[110] Ruan Y F, Lin Y F, Feng Y C A, et al. Improving polygenic prediction in ancestrally diverse populations[J]. Nature Genetics, 2022, 54(5):573-580.
[111] Amariuta T, Ishigaki K, Sugishita H, et al. Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements[J]. Nature Genetics, 2020, 52(12):1346-1354.
[112] Smith G D, Ebrahim S. 'Mendelian randomization':Can genetic epidemiology contribute to understanding environmental determinants of disease?[J]. International Journal of Epidemiology, 2003, 32(1):1-22.
[113] Pingault J B, O'Reilly P F, Schoeler T, et al. Using genetic data to strengthen causal inference in observational research[J]. Nature Reviews Genetics, 2018, 19:566-580.
[114] Ference B A, Kastelein J J P, Ginsberg H N, et al. Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk[J]. JAMA, 2017, 318(10):947-956.
[115] Ference B A, Ray K K, Catapano A L, et al. Mendelian randomization study of ACLY and cardiovascular disease[J]. New England Journal of Medicine, 2019, 380(11):1033-1042.
[116] Ference B A, Yoo W, Alesh I, et al. Effect of longterm exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease:A Mendelian randomization analysis[J]. Journal of the American College of Cardiology, 2012, 60(25):2631-2639.
[117] Holmes M V, Richardson T G, Ference B A, et al. Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development[J]. Nature Reviews Cardiology, 2021, 18(6):435-453.
[118] Ridker P M, Everett B M, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. The New England Journal of Medicine, 2017, 377(12):1119-1131.
[119] Sanderson E, Glymour M M, Holmes M V, et al. Mendelian randomization[J]. Nature Reviews Methods Primers, 2022, 2:6.
[120] Sanderson E. Multivariable Mendelian randomization and mediation[J]. Cold Spring Harbor Perspectives in Medicine, 2021, 11(2):a038984.
[121] Sanderson E, Davey Smith G, Windmeijer F, et al. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings[J]. International Journal of Epidemiology, 2019, 48(3):713-727.
[122] Burgess S, Thompson S G. Avoiding bias from weak instruments in Mendelian randomization studies[J]. International Journal of Epidemiology, 2011, 40(3):755-764.
[123] Rees J M B, Wood A M, Burgess S. Extending the MREgger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy[J]. Statistics in Medicine, 2017, 36(29):4705-4718.
[124] Gomes B, Ashley E A. Artificial intelligence in molecular medicine[J]. The New England Journal of Medicine, 2023, 388(26):2456-2465.
[125] Poplin R, Chang P C, Alexander D, et al. A universal SNP and small-indel variant caller using deep neural networks[J]. Nature Biotechnology, 2018, 36(10):983-987.
[126] DePristo M A, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data[J]. Nature Genetics, 2011, 43(5):491-498.
[127] Birgmeier J, Haeussler M, Deisseroth C A, et al. AMELIE speeds Mendelian diagnosis by matching patient phenotype and genotype to primary literature[J]. Science Translational Medicine, 2020, 12(544):eaau9113.
[128] De La Vega F M, Chowdhury S, Moore B, et al. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases[J]. Genome Medicine, 2021, 13(1):153.
[129] Splinter K, Adams D R, Bacino C A, et al. Effect of genetic diagnosis on patients with previously undiagnosed disease[J]. The New England Journal of Medicine, 2018, 379(22):2131-2139.
[130] Lee H N, Deignan J L, Dorrani N, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders[J]. JAMA, 2014, 312(18):1880.
[131] Wright C F, Campbell P, Eberhardt R Y, et al. Genomic diagnosis of rare pediatric disease in the United Kingdom and Ireland[J]. The New England Journal of Medicine, 2023, 388(17):1559-1571.
[132] Dewey F E, Grove M E, Pan C P, et al. Clinical interpretation and implications of whole-genome sequencing[J]. JAMA, 2014, 311(10):1035.
[133] Gorzynski J E, Goenka S D, Shafin K, et al. Ultrarapid nanopore genome sequencing in a critical care setting[J]. The New England Journal of Medicine, 2022, 386(7):700-702.
[134] Li X, Battle A, Karczewski K J, et al. Transcriptome sequencing of a large human family identifies the impact of rare noncoding variants[J]. American Journal of Human Genetics, 2014, 95(3):245-256.
[135] Li X, Kim Y, Tsang E K, et al. The impact of rare variation on gene expression across tissues[J]. Nature, 2017, 550(7675):239-243.
[136] Frésard L, Smail C, Ferraro N M, et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts[J]. Nature Medicine, 2019, 25(6):911-919.
[137] Ferraro N M, Strober B J, Einson J, et al. Transcriptomic signatures across human tissues identify functional rare genetic variation[J]. Science, 2020, 369(6509):eaaz5900.
[138] Jaganathan K, Panagiotopoulou K S, McRae J F, et al. Predicting splicing from primary sequence with deep learning[J]. Cell, 2019, 176(3):535-548.e24.
[139] Mertes C, Scheller I F, Yépez V A, et al. Detection of aberrant splicing events in RNA-seq data using FRASER[J]. Nature Communications, 2021, 12(1):529.
[140] Park C Y, Zhou J, Wong A K, et al. Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk[J]. Nature Genetics, 2021, 53(2):166-173.
[141] Wen B, Zeng W F, Liao Y X, et al. Deep learning in proteomics[J]. Proteomics, 2020, 20(21/22):e1900335.
[142] Zhou X X, Zeng W F, Chi H, et al. pDeep:Predicting MS/MS spectra of peptides with deep learning[J]. Analytical Chemistry, 2017, 89(23):12690-12697.
[143] Bouwmeester R, Gabriels R, Hulstaert N, et al. DeepLC can predict retention times for peptides that carry as-yet unseen modifications[J]. Nature Methods, 2021, 18(11):1363-1369.
[144] Sinitcyn P, Richards A L, Weatheritt R J, et al. Global detection of human variants and isoforms by deep proteome sequencing[J]. Nature Biotechnology, 2023, 41(12):1776-1786.
[145] Brandes N, Goldman G, Wang C H, et al. Genomewide prediction of disease variant effects with a deep protein language model[J]. Nature Genetics, 2023, 55(9):1512-1522.
[146] Williams S A, Kivimaki M, Langenberg C, et al. Plasma protein patterns as comprehensive indicators of health[J]. Nature Medicine, 2019, 25(12):1851-1857.
[147] Mann M, Kumar C, Zeng W F, et al. Artificial intelligence for proteomics and biomarker discovery[J]. Cell Systems, 2021, 12(8):759-770.
[148] Liu N, Xiao J, Gijavanekar C, et al. Comparison of untargeted metabolomic profiling vs traditional metabolic screening to identify inborn errors of metabolism[J]. JAMA Network Open, 2021, 4(7):e2114155.
[149] Shayota B J, Donti T R, Xiao J, et al. Untargeted metabolomics as an unbiased approach to the diagnosis of inborn errors of metabolism of the non-oxidative branch of the pentose phosphate pathway[J]. Molecular Genetics and Metabolism, 2020, 131(1/2):147-154.
[150] Van Dooijeweert B, Broeks M H, Verhoeven-Duif N M, et al. Untargeted metabolic profiling in dried blood spots identifies disease fingerprint for pyruvate kinase deficiency[J]. Haematologica, 2021, 106(10):2720-2725.
[151] Koohi-Moghadam M, Wang H B, Wang Y C, et al. Predicting disease-associated mutation of metal-binding sites in proteins using a deep learning approach[J]. Nature Machine Intelligence, 2019, 1(12):561-567.
[152] Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates?[J]. Nature Reviews Drug Discovery, 2004, 3(8):711-715.
[153] Kola I, Bell J. A call to reform the taxonomy of human disease[J]. Nature Reviews Drug Discovery, 2011, 10(9):641-642.
[154] Johansson Å, Andreassen O A, Brunak S, et al. Precision medicine in complex diseases-Molecular subgrouping for improved prediction and treatment stratification[J]. Journal of Internal Medicine, 2023, 294(4):378-396.
[155] Antman E M, Loscalzo J. Precision medicine in cardiology[J]. Nature Reviews Cardiology, 2016, 13(10):591-602.
[156] Melén E, Koppelman G H, Vicedo-Cabrera A M, et al. Allergies to food and airborne allergens in children and adolescents:Role of epigenetics in a changing environment[J]. The Lancet Child & Adolescent Health, 2022, 6(11):810-819.
[157] Loos R J F, Yeo G S H. The genetics of obesity:From discovery to biology[J]. Nature Reviews Genetics, 2022, 23(2):120-133.
[158] Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes:A data-driven cluster analysis of six variables[J]. The Lancet Diabetes & Endocrinology, 2018, 6(5):361-369.
[159] Jaenisch R, Bird A. Epigenetic regulation of gene expression:How the genome integrates intrinsic and environmental signals[J]. Nature Genetics, 2003, 33(Suppl):245-254.
[160] Parreno V, Loubiere V, Schuettengruber B, et al. Transient loss of Polycomb components induces an epigenetic cancer fate[J]. Nature, 2024, 629(8012):688-696.
[161] Reichart D, Lindberg E L, Maatz H, et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies[J]. Science, 2022, 377(6606):eabo1984.
[162] Schübeler D. Function and information content of DNA methylation[J]. Nature, 2015, 517(7534):321-326.
[163] Besingi W, Johansson A. Smoke-related DNA methylation changes in the etiology of human disease[J]. Human Molecular Genetics, 2014, 23(9):2290-2297.
[164] Li C, Sun Y D, Yu G Y, et al. Integrated omics of metastatic colorectal cancer[J]. Cancer Cell, 2020, 38(5):734-747.
[165] Laaksonen R, Ekroos K, Sysi-Aho M, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol[J]. European Heart Journal, 2016, 37(25):1967-1976.
[166] Wigger L, Cruciani-Guglielmacci C, Nicolas A, et al. Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans[J]. Cell Reports, 2017, 18(9):2269-2279.
[167] Ding L L, Liu Y, Meng X, et al. Biomarker and genomic analyses reveal molecular signatures of non-cardioembolic ischemic stroke[J]. Signal Transduction and Targeted Therapy, 2023, 8(1):222.
[168] Liu Z H, Zhao Y H, Kong P Z, et al. Integrated multiomics profiling yields a clinically relevant molecular classification for esophageal squamous cell carcinoma[J]. Cancer Cell, 2023, 41(1):181-195.
[169] Abul-Husn N S, Kenny E E. Personalized medicine and the power of electronic health records[J]. Cell, 2019, 177(1):58-69.
[170] Shendure J, Findlay G M, Snyder M W. Genomic medicine-progress, pitfalls, and promise[J]. Cell, 2019, 177(1):45-57.
[171] Yurkovich J T, Evans S J, Rappaport N, et al. The transition from genomics to phenomics in personalized population health[J]. Nature Reviews Genetics, 2024, 25(4):286-302.
[172] Vockley J G, Niederhuber J E. Diagnosis and treatment of cancer using genomics[J]. BMJ, 2015, 350:h1832.
[173] Stark Z, Dolman L, Manolio T A, et al. Integrating genomics into healthcare:A global responsibility[J]. American Journal of Human Genetics, 2019, 104(1):13-20.
[174] 100, 000 Genomes Project Pilot Investigators. 100, 000 genomes pilot on rare-disease diagnosis in health carepreliminary report[J]. New England Journal of Medicine, 2021, 385(20):1868-1880.
[175] Thavaneswaran S, Rath E, Tucker K, et al. Therapeutic implications of germline genetic findings in cancer[J]. Nature Reviews Clinical Oncology, 2019, 16(6):386-396.
[176] Chakravarty D, Solit D B. Clinical cancer genomic profiling[J]. Nature Reviews Genetics, 2021, 22(8):483-501.
[177] ACMG Board of Directors. ACMG policy statement:Updated recommendations regarding analysis and reporting of secondary findings in clinical genome-scale sequencing[J]. Genetics in Medicine, 2015, 17(1):68-69.
[178] Miyazaki N, Kobayashi T, Komiya T, et al. Postoperative malignant hyperthermia confirmed by calcium-induced calcium release rate after breast cancer surgery, in which prompt recognition and immediate dantrolene administration were life-saving:A case report[J]. Journal of Medical Case Reports, 2021, 15(1):201.
[179] Narod S A, Foulkes W D. BRCA1 and BRCA2:1994 and beyond[J]. Nature Reviews Cancer, 2004, 4(9):665-676.
[180] Knudson A G Jr. Mutation and cancer:Statistical study of retinoblastoma[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(4):820-823.
[181] Xie W, Suryaprakash S, Wu C, et al. Trends in the use of liquid biopsy in oncology[J]. Nature Reviews Drug Discovery, 2023, 22(8):612-613.
[182] Oxnard G R, Thress K S, Alden R S, et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-smallcell lung cancer[J]. Journal of Clinical Oncology, 2016, 34(28):3375-3382.
[183] Strickler J H, Loree J M, Ahronian L G, et al. Genomic landscape of cell-free DNA in patients with colorectal cancer[J]. Cancer Discovery, 2018, 8(2):164-173.
[184] Diehl F, Schmidt K, Choti M A, et al. Circulating mutant DNA to assess tumor dynamics[J]. Nature Medicine, 2008, 14(9):985-990.
[185] Bettegowda C, Sausen M, Leary R, et al. Abstract 5606: Detection of circulating tumor DNA in early and late stage human malignancies[J]. Cancer Research, 2014, 74(19_Supplement): 5606.
[186] Nam A S, Chaligne R, Landau D A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics[J]. Nature Reviews Genetics, 2021, 22(1): 3-18.
[187] Shaffer S M, Dunagin M C, Torborg S R, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance[J]. Nature, 2017, 546(7658): 431-435.
[188] Stunnenberg H G, Hirst M. The international human epigenome consortium: A blueprint for scientific collaboration and discovery[J]. Cell, 2016, 167(5): 1145-1149.
[189] Hutter C, Zenklusen J C. The cancer genome atlas: Creating lasting value beyond its data[J]. Cell, 2018, 173(2): 283-285.
[190] Piunti A, Shilatifard A. Epigenetic balance of gene expression by Polycomb and COMPASS families[J]. Science, 2016, 352(6290): aad9780.
[191] Müller D, Gyrffy B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer[J]. Biochimica et Biophysica Acta Reviews on Cancer, 2022, 1877(3): 188722.
[192] Pon J R, Marra M A. Driver and passenger mutations in cancer[J]. Annual Review of Pathology, 2015, 10: 25-50.
[193] Kloetgen A, Thandapani P, Tsirigos A, et al. 3D chromosomal landscapes in hematopoiesis and immunity[J]. Trends in Immunology, 2019, 40(9): 809-824.
[194] Feinberg A P, Koldobskiy M A, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression[J]. Nature Reviews Genetics, 2016, 17(5): 284-299.
[195] Wouters O J, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018[J]. JAMA, 2020, 323(9): 844-853.
[196] Ochoa D, Karim M, Ghoussaini M, et al. Human genetics evidence supports two-thirds of the 2021 FDA-approved drugs[J]. Nature Reviews Drug Discovery, 2022, 21(8): 551.
[197] Nelson M R, Tipney H, Painter J L, et al. The support of human genetic evidence for approved drug indications[J]. Nature Genetics, 2015, 47(8): 856-860.
[198] Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data [J]. Nature, 2018, 562(7726): 203-209.
[199] Sun B B, Chiou J, Traylor M, et al. Plasma proteomic associations with genetics and health in the UK Biobank[J]. Nature, 2023, 622(7982): 329-338.
[200] Dewey F E, Gusarova V, Dunbar R L, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease[J]. The New England Journal of Medicine, 2017, 377(3): 211-221.
[201] Ozen A, Comrie W A, Ardy R C, et al. CD55 deficiency, early-onset protein-losing enteropathy, and thrombosis[J]. The New England Journal of Medicine, 2017, 377(1): 52-61.
[202] O'Brien S G, Guilhot F, Larson R A, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia[J]. The New England Journal of Medicine, 2003, 348(11): 994-1004.
[203] 武士华. 药物基因组学研究发展和前景分析[J]. 军事医学科学院院刊, 2002, 26(3): 218-221.
[204] Sanseau P, Agarwal P, Barnes M R, et al. Use of genome-wide association studies for drug repositioning [J]. Nature Biotechnology, 2012, 30(4): 317-320.
[205] Okada Y, Wu D, Trynka G, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery [J]. Nature, 2014, 506(7488): 376-381.
[206] Abida W, Armenia J, Gopalan A, et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making[J]. JCO Precision Oncology, 2017, 2017: PO.17.00029.
[207] Tardif J C, Kouz S, Waters D D, et al. Efficacy and safety of low-dose colchicine after myocardial infarction [J]. The New England Journal of Medicine, 2019, 381(26): 2497-2505.
[208] Opstal T S J, Hoogeveen R M, Fiolet A T L, et al. Colchicine attenuates inflammation beyond the inflammasome in chronic coronary artery disease: A LoDoCo2 proteomic substudy[J]. Circulation, 2020, 142(20): 1996-1998.
[209] Yarmolinsky J, Bull C J, Vincent E E, et al. Association between genetically proxied inhibition of HMGCoA reductase and epithelial ovarian cancer[J]. JAMA, 2020, 323(7): 646-655.
[210] Pushpakom S, Iorio F, Eyers P A, et al. Drug repurposing: Progress, challenges and recommendations[J]. Nature Reviews Drug Discovery, 2019, 18(1): 41-58.
[211] Iorio F, Rittman T, Ge H, et al. Transcriptional data: A new gateway to drug repositioning? [J]. Drug Discovery Today, 2013, 18(7/8): 350-357.
[212] Lamb J, Crawford E D, Peck D, et al. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease[J]. Science, 2006, 313(5795): 1929-1935.
[213] Subramanian A, Narayan R, Corsello S M, et al. A next generation connectivity map: L1000 platform and the first 1, 000, 000 profiles[J]. Cell, 2017, 171(6): 1437- 1452.e17.
[214] Wei G, Twomey D, Lamb J, et al. Gene expressionbased chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance[J]. Cancer Cell, 2006, 10(4): 331-342.
[215] Laukkanen S, Veloso A, Yan C, et al. Therapeutic targeting of LCK tyrosine kinase and mTOR signaling in T-cell acute lymphoblastic leukemia[J]. Blood, 2022, 140(17): 1891-1906.
[216] Blackburn J S, Liu S L, Wilder J L, et al. Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/ mTORC1 pathway activation[J]. Cancer Cell, 2014, 25(3): 366-378.
[217] Pham T H, Qiu Y, Zeng J C, et al. A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing[J]. Nature Machine Intelligence, 2021, 3(3): 247-257.
[218] Schork N J. Personalized medicine: Time for one-person trials[J]. Nature, 2015, 520(7549): 609-611.
[219] Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: Prospective analysis of 18820 patients[J]. BMJ, 2004, 329(7456): 15-19.
[220] Iorio F, Knijnenburg T A, Vis D J, et al. A landscape of pharmacogenomic interactions in cancer[J]. Cell, 2016, 166(3): 740-754.
[221] Ghandi M, Huang F W, Jané-Valbuena J, et al. Nextgeneration characterization of the Cancer Cell Line Encyclopedia[J]. Nature, 2019, 569(7757): 503-508.
[222] Yingtaweesittikul H, Wu J X, Mongia A, et al. CREAMMIST: An integrative probabilistic database for cancer drug response prediction[J]. Nucleic Acids Research, 2023, 51(D1): D1242-D1248.
[223] Virani S S, Alonso A, Aparicio H J, et al. Heart disease and stroke statistics-2021 update: A report from the American heart association[J]. Circulation, 2021, 143(8): e254-e743.
[224] Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients[J]. BMJ-British Medical Journal, 2002, 324(7329): 71-86.
[225] Diener H C, Bogousslavsky J, Brass L M, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): Randomised, doubleblind, placebo-controlled trial[J]. Lancet, 2004, 364(9431): 331-337.
[226] Bhatt D L, Fox K A A, Hacke W, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events[J]. The New England Journal of Medicine, 2006, 354(16): 1706-1717.
[227] Johnston S C, Easton J D, Farrant M, et al. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA [J]. The New England Journal of Medicine, 2018, 379(3): 215-225.
[228] Wang Y J, Meng X, Wang A X, et al. Ticagrelor versus clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA[J]. The New England Journal of Medicine, 2021, 385(27): 2520-2530.
[229] Villiger L, Joung J, Koblan L, et al. CRISPR technologies for genome, epigenome and transcriptome editing [J]. Nature Reviews Molecular Cell Biology, 2024, 25(6): 464-487.
[230] Nissen S E, Wolski K, Watts G F, et al. Single ascending and multiple-dose trial of zerlasiran, a short interfering RNA targeting lipoprotein(a): A randomized clinical trial[J]. JAMA, 2024, 331(18): 1534-1543.
[231] 张思思, 陈旭, 陈婷婷, 等. GSA-Human: 人类遗传资源数据管理的公共系统[J]. 遗传, 2021, 43(10): 988- 993.
[232] Price W N, Cohen I G. Privacy in the age of medical big data[J]. Nature Medicine, 2019, 25(1): 37-43.
[233] Chen G B, Liu S Y, Zhang L, et al. Building and sharing medical cohorts for research[J]. Innovation (Cambridge (Mass)), 2024, 5(3): 100623.
文章导航

/