综述

碳纳米材料改性聚氨酯泡沫研究进展

  • 廉兆龙 ,
  • 李晓屿 ,
  • 陈鹏 ,
  • 孙彬 ,
  • 徐新宇 ,
  • 黄玉东 ,
  • 王彩凤
展开
  • 1. 辽宁石油化工大学石油化工学院, 抚顺 113001;
    2. 哈尔滨工业大学化工与化学学院, 哈尔滨 150001
廉兆龙,硕士研究生,研究方向为改性聚氨酯泡沫的制备,电子信箱:1941669040@qq.com

收稿日期: 2022-11-28

  修回日期: 2023-03-10

  网络出版日期: 2024-06-12

基金资助

辽宁省教育厅自然科学基金项目(L2019041)

Research progress of polyurethane foam modified by carbon nano-materials

  • LIAN Zhaolong ,
  • LI Xiaoyu ,
  • CHEN Peng ,
  • SUN Bin ,
  • XU Xinyu ,
  • HUANG Yudong ,
  • WANG Caifeng
Expand
  • 1. Institute of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001, China;
    2. School of Chemical and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2022-11-28

  Revised date: 2023-03-10

  Online published: 2024-06-12

摘要

介绍了近年利用碳纳米材料改性聚氨酯泡沫的研究进展,根据引入碳纳米材料的不同方式将增强方法分为内部掺杂法和外保护层法,探讨了2种方法的作用机理与改性效果;分析了碳纳米材料改性聚氨酯泡沫存在的不足,认为改性操作简单、降低填料团聚性是未来研究的重点。

本文引用格式

廉兆龙 , 李晓屿 , 陈鹏 , 孙彬 , 徐新宇 , 黄玉东 , 王彩凤 . 碳纳米材料改性聚氨酯泡沫研究进展[J]. 科技导报, 2024 , 42(9) : 85 -93 . DOI: 10.3981/j.issn.1000-7857.2022.11.01815

Abstract

This paper introduces the research progress of polyurethane foam changed by carbon nano-materials in recent years. The enhancement methods are divided into two categories according to the different ways of introducing carbon nano-materials, namely the internal doping method and the external protective layer method. The action mechanism and modification effect of the two methods are discussed respectively. The shortcomings of polyurethane foam modified by carbon nano-materials and the prospect for the future are discussed. Simple modification operation and reduction of packing agglomeration should be the focus of future research.

参考文献

[1] Kaikade D S, Sabnis A S. Polyurethane foams from vege‐table oil-based polyols: A review[J]. Polymer Bulletin, 2023, 80(3): 2239-2261.
[2] Noreen A, Zia K M, Tabasum S, et al. Hydroxyethylcellu‐lose-g-poly (lactic acid) blended polyurethanes: Prepara‐tion, characterization and biological studies[J]. Interna‐tional Journal of Biological Macromolecules, 2020, 151: 993-1003.
[3] Noureddine B, Zitouni S, Achraf B, et al. Development and characterization of tailored polyurethane foams for shock absorption[J]. Applied Sciences, 2022, 12(4): 2206-2206.
[4] Vatankhah E, Abasnezhad M, Nazerian M, et al. Thermal energy storage and mechanical performance of composites of rigid polyurethane foam and phase change material prepared by one-shot synthesis method[J]. Journal of Polymer Research, 2022, 29(3): 81-81.
[5] 周继宏, 吕杰, 刘佳. 聚氨酯高分子合成及应用研究进展[J]. 化工时刊, 2019, 33(12): 27-31.
[6] 李慕珂, 李自力, 李扬, 等. 聚氨酯泡沫材料的高温蠕变特性[J]. 石油化工高等学校学报, 2018, 31(2): 96-100.
[7] 姜浩浩, 刘新亮, 邹勇. 硬质聚氨酯泡沫/聚磷酸铵复合材料的制备及阻燃性能研究[J]. 塑料工业, 2019, 47(1): 89-93.
[8] Xie H, Zhu Z, Zhang X. Study on thermal behavior and kinetics of flexible polyurethane foam modified with stron‐tium stannate and ammonium polyphosphate[J]. Polymer Science, Series A, 2021, 63(Suppl 1): 64-74.
[9] Luo Y, Zou J, Li J, et al. Effect of crosslinking agent on properties and morphology of water‐blown semirigid poly‐urethane foam[J]. Journal of Applied Polymer Science, 2018, 135(42): 46753.
[10] 许晓辰. 硬质聚氨酯泡沫塑料的发展及应用[J]. 化工设计通讯, 2020, 46(3): 3-4.
[11] Bo G, Xu X, Tian X, et al. Enhancing the flame retar‐dancy for castor oil-based rigid polyurethane foams via silica aerogel[J]. Journal of Non-Crystalline Solids, 2021, 562: 120783.
[12] 杨洋, 杨超, 覃峰. 硬质聚氨酯隔热泡沫材料的制备及其阻燃性能研究[J]. 塑料科技, 2022, 50(2): 43-46.
[13] 解淼, 孙海涛, 于浩. 纳米材料改性聚氨酯泡沫的研究进展[J]. 聚氨酯工业, 2018, 33(4): 1-3, 10.
[14] Bhinder J, Agnihotri P K. Synthesis and characterization of poly-urethane foam doped with different nano-fillers[J]. Materials Today: Proceedings, 2019, 18: 1479-1488.
[15] 刘利威, 常春, 戚小各. 粗甘油生物基聚氨酯泡沫的改性研究[J]. 高校化学工程学报, 2019, 33(2): 469-474.
[16] Nazeran N, Moghaddas J. Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application[J]. Journal of Non-Crystal‐line Solids, 2017, 461: 1-11.
[17] 方园, 赵华伟, 张冰洁. 纳米TiO2改性环氧涂层对玻璃纤维/不饱和聚酯复合材料紫外-凝露老化特性的影响[J]. 复合材料学报, 2021, 38(5): 1407-1415.
[18] Jia P, Cheng W, Lu J, et al. Applications of GO/OA ‐ POSS layer‐by‐layer self‐assembly nanocoating on flame retardancy and smoke suppression of flexible polyure‐thane foam[J]. Polymers for Advanced Technologies, 2021, 32(11): 4516-4530.
[19] 潘颖, 赵红挺. 埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能[J]. 材料研究学报, 2021, 35(6): 449-457.
[20] 徐祥, 沈照羽, 崔胜凯. 发泡剂对硬质聚氨酯泡沫性能的影响[J]. 热固性树脂, 2021, 36(2): 31-33.
[21] Kurańska M, Prociak A, Michałowski S, et al. The influ‐ence of blowing agents type on foaming process and properties of rigid polyurethane foams[J]. Polimery, 2018, 63(10): 672-678.
[22] 李婷. 建筑保温硬质聚氨酯泡沫塑料的发泡工艺与应用[J]. 上海节能, 2016(11): 629-635.
[23] 李莹. 纳米复合聚氨酯泡沫材料的微孔结构及其性能研究[D]. 北京: 北京化工大学, 2020.
[24] 李业光, 贾洪. 纳米碳材料改性聚氨酯泡沫的研究进展[J]. 炭素, 2017(3): 15-17, 38.
[25] Kong S, Zhang X, Jin B, et al. FeNb2O6/reduced graphene oxide composites with intercalation pseudo-capacitance enabling ultrahigh energy density for lithium-ion capaci‐tors[J]. RSC Advances, 2021, 11(51): 32248-32257.
[26] Liu H, Zhou S, Li J, et al. Preparation of graphene via modified redox method and its electronic performance[J]. Ferroelectrics, 2019, 551(1): 251-258.
[27] Shin S R, Lee D S. Nanocomposites of rigid polyurethane foam and graphene Nanoplates obtained by exfoliation of natural graphite in polymeric 4, 4'-Diphenylmethane Di‐isocyanate[J]. Nanomaterials, 2022, 12(4): 685-685.
[28] Pinto S C, Marques P A A P, Vicente R, et al. Hybrid structures made of polyurethane/graphene nanocompos‐ite foams embedded within aluminum open-cell foam[J]. Metals, 2020, 10(6): 768.
[29] Li Y, Tian H, Zhang J, et al. Fabrication and properties of rigid polyurethane nanocomposite foams with function‐al isocyanate modified graphene oxide[J]. Polymer Com‐posites, 2020, 41(12): 5126-5134.
[30] Melati A, Padmasari G, Oktavian R, et al. A compara‐tive study of carbon nanofiber (CNF) and activated car‐bon based on coconut shell for ammonia (NH3) adsorp‐tion performance[J]. Applied Physics A, 2022, 128(3): 211.
[31] 程健强, 王文广, 韩杰. 碳纤维增强水泥基复合材料的力学性能研究进展[J]. 辽宁石油化工大学学报, 2021, 41(3): 34-42.
[32] Stazi F, Tittarelli F, Saltarelli F, et al. Carbon nanofibers in polyurethane foams: Experimental evaluation of ther‐mo-hygrometric and mechanical performance[J]. Poly‐mer Testing, 2018, 67: 234-245.
[33] Sathiyamoorthy S, Girijakumari G, Kannan P, et al. Tai‐loring the functional properties of polyurethane foam with dispersions of carbon nanofiber for power generator applications[J]. Applied Surface Science, 2018, 449: 507-513.
[34] Aqel A, Abou El-Nour K M M, Ammar R A A, et al. Carbon nanotubes, science and technology part (I) struc‐ture, synthesis and characterisation[J]. Arabian Journal of Chemistry, 2012, 5(1): 1-23.
[35] Omachi H, Nakayama T, Takahashi E, et al. Initiation of carbon nanotube growth by well-defined carbon nanor‐ings[J]. Nature Chemistry, 2013, 5(7): 572-576.
[36] Ates M, Eker A A, Eker B. Carbon nanotube-based nanocomposites and their applications[J]. Journal of Ad‐hesion Science and Technology, 2017, 31(18): 1977-1997.
[37] Yaghoubi A, Nikje M M A. Silanization of multi-walled carbon nanotubes and the study of its effects on the properties of polyurethane rigid foam nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 338-344.
[38] Duc H M, Huu D N, Huu T T, et al. The effect of multi‐walled carbon nanotubes on the thermal conductivity and cellular size of polyurethane foam[J]. Advances in Polymer Technology, 2021, 2021: 1-8.
[39] 冯文静, 李守平, 陈雅君. 软质聚氨酯泡沫阻燃技术的研究进展[J]. 中国塑料, 2020, 34(3): 93-102.
[40] 邢凤钦, 张伟, 佟铭玉. 阻燃型硬质聚氨酯泡沫的研究进展[J]. 辽宁化工, 2021, 50(5): 650-653, 657.
[41] Maddalena L, Carosio F, Fina A. In situ assembly of DNA/graphene oxide nanoplates to reduce the fire threat of flexible foams[J]. Advanced Materials Interfaces, 2021, 8(21): 2101083.
[42] Hu J, Yang Z. Layer-by-layer self-assembly preparation and desalination performance of graphene oxide mem‐brane[J]. Water Supply, 2022, 22(1): 126-136.
[43] Ge L, Tan X, Sheng R, et al. Layer-by-layer self-assem‐bly of giant polyelectrolyte microcapsules templated by microbubbles as potential hydrophilic or hydrophobic drug delivery system[J]. Colloid and Interface Science Communications, 2022, 47: 100603.
文章导航

/