[1] Kaikade D S, Sabnis A S. Polyurethane foams from vege‐table oil-based polyols: A review[J]. Polymer Bulletin, 2023, 80(3): 2239-2261.
[2] Noreen A, Zia K M, Tabasum S, et al. Hydroxyethylcellu‐lose-g-poly (lactic acid) blended polyurethanes: Prepara‐tion, characterization and biological studies[J]. Interna‐tional Journal of Biological Macromolecules, 2020, 151: 993-1003.
[3] Noureddine B, Zitouni S, Achraf B, et al. Development and characterization of tailored polyurethane foams for shock absorption[J]. Applied Sciences, 2022, 12(4): 2206-2206.
[4] Vatankhah E, Abasnezhad M, Nazerian M, et al. Thermal energy storage and mechanical performance of composites of rigid polyurethane foam and phase change material prepared by one-shot synthesis method[J]. Journal of Polymer Research, 2022, 29(3): 81-81.
[5] 周继宏, 吕杰, 刘佳. 聚氨酯高分子合成及应用研究进展[J]. 化工时刊, 2019, 33(12): 27-31.
[6] 李慕珂, 李自力, 李扬, 等. 聚氨酯泡沫材料的高温蠕变特性[J]. 石油化工高等学校学报, 2018, 31(2): 96-100.
[7] 姜浩浩, 刘新亮, 邹勇. 硬质聚氨酯泡沫/聚磷酸铵复合材料的制备及阻燃性能研究[J]. 塑料工业, 2019, 47(1): 89-93.
[8] Xie H, Zhu Z, Zhang X. Study on thermal behavior and kinetics of flexible polyurethane foam modified with stron‐tium stannate and ammonium polyphosphate[J]. Polymer Science, Series A, 2021, 63(Suppl 1): 64-74.
[9] Luo Y, Zou J, Li J, et al. Effect of crosslinking agent on properties and morphology of water‐blown semirigid poly‐urethane foam[J]. Journal of Applied Polymer Science, 2018, 135(42): 46753.
[10] 许晓辰. 硬质聚氨酯泡沫塑料的发展及应用[J]. 化工设计通讯, 2020, 46(3): 3-4.
[11] Bo G, Xu X, Tian X, et al. Enhancing the flame retar‐dancy for castor oil-based rigid polyurethane foams via silica aerogel[J]. Journal of Non-Crystalline Solids, 2021, 562: 120783.
[12] 杨洋, 杨超, 覃峰. 硬质聚氨酯隔热泡沫材料的制备及其阻燃性能研究[J]. 塑料科技, 2022, 50(2): 43-46.
[13] 解淼, 孙海涛, 于浩. 纳米材料改性聚氨酯泡沫的研究进展[J]. 聚氨酯工业, 2018, 33(4): 1-3, 10.
[14] Bhinder J, Agnihotri P K. Synthesis and characterization of poly-urethane foam doped with different nano-fillers[J]. Materials Today: Proceedings, 2019, 18: 1479-1488.
[15] 刘利威, 常春, 戚小各. 粗甘油生物基聚氨酯泡沫的改性研究[J]. 高校化学工程学报, 2019, 33(2): 469-474.
[16] Nazeran N, Moghaddas J. Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application[J]. Journal of Non-Crystal‐line Solids, 2017, 461: 1-11.
[17] 方园, 赵华伟, 张冰洁. 纳米TiO2改性环氧涂层对玻璃纤维/不饱和聚酯复合材料紫外-凝露老化特性的影响[J]. 复合材料学报, 2021, 38(5): 1407-1415.
[18] Jia P, Cheng W, Lu J, et al. Applications of GO/OA ‐ POSS layer‐by‐layer self‐assembly nanocoating on flame retardancy and smoke suppression of flexible polyure‐thane foam[J]. Polymers for Advanced Technologies, 2021, 32(11): 4516-4530.
[19] 潘颖, 赵红挺. 埃洛石自组装涂层在软质聚氨酯泡沫上的制备及其阻燃抑烟性能[J]. 材料研究学报, 2021, 35(6): 449-457.
[20] 徐祥, 沈照羽, 崔胜凯. 发泡剂对硬质聚氨酯泡沫性能的影响[J]. 热固性树脂, 2021, 36(2): 31-33.
[21] Kurańska M, Prociak A, Michałowski S, et al. The influ‐ence of blowing agents type on foaming process and properties of rigid polyurethane foams[J]. Polimery, 2018, 63(10): 672-678.
[22] 李婷. 建筑保温硬质聚氨酯泡沫塑料的发泡工艺与应用[J]. 上海节能, 2016(11): 629-635.
[23] 李莹. 纳米复合聚氨酯泡沫材料的微孔结构及其性能研究[D]. 北京: 北京化工大学, 2020.
[24] 李业光, 贾洪. 纳米碳材料改性聚氨酯泡沫的研究进展[J]. 炭素, 2017(3): 15-17, 38.
[25] Kong S, Zhang X, Jin B, et al. FeNb2O6/reduced graphene oxide composites with intercalation pseudo-capacitance enabling ultrahigh energy density for lithium-ion capaci‐tors[J]. RSC Advances, 2021, 11(51): 32248-32257.
[26] Liu H, Zhou S, Li J, et al. Preparation of graphene via modified redox method and its electronic performance[J]. Ferroelectrics, 2019, 551(1): 251-258.
[27] Shin S R, Lee D S. Nanocomposites of rigid polyurethane foam and graphene Nanoplates obtained by exfoliation of natural graphite in polymeric 4, 4'-Diphenylmethane Di‐isocyanate[J]. Nanomaterials, 2022, 12(4): 685-685.
[28] Pinto S C, Marques P A A P, Vicente R, et al. Hybrid structures made of polyurethane/graphene nanocompos‐ite foams embedded within aluminum open-cell foam[J]. Metals, 2020, 10(6): 768.
[29] Li Y, Tian H, Zhang J, et al. Fabrication and properties of rigid polyurethane nanocomposite foams with function‐al isocyanate modified graphene oxide[J]. Polymer Com‐posites, 2020, 41(12): 5126-5134.
[30] Melati A, Padmasari G, Oktavian R, et al. A compara‐tive study of carbon nanofiber (CNF) and activated car‐bon based on coconut shell for ammonia (NH3) adsorp‐tion performance[J]. Applied Physics A, 2022, 128(3): 211.
[31] 程健强, 王文广, 韩杰. 碳纤维增强水泥基复合材料的力学性能研究进展[J]. 辽宁石油化工大学学报, 2021, 41(3): 34-42.
[32] Stazi F, Tittarelli F, Saltarelli F, et al. Carbon nanofibers in polyurethane foams: Experimental evaluation of ther‐mo-hygrometric and mechanical performance[J]. Poly‐mer Testing, 2018, 67: 234-245.
[33] Sathiyamoorthy S, Girijakumari G, Kannan P, et al. Tai‐loring the functional properties of polyurethane foam with dispersions of carbon nanofiber for power generator applications[J]. Applied Surface Science, 2018, 449: 507-513.
[34] Aqel A, Abou El-Nour K M M, Ammar R A A, et al. Carbon nanotubes, science and technology part (I) struc‐ture, synthesis and characterisation[J]. Arabian Journal of Chemistry, 2012, 5(1): 1-23.
[35] Omachi H, Nakayama T, Takahashi E, et al. Initiation of carbon nanotube growth by well-defined carbon nanor‐ings[J]. Nature Chemistry, 2013, 5(7): 572-576.
[36] Ates M, Eker A A, Eker B. Carbon nanotube-based nanocomposites and their applications[J]. Journal of Ad‐hesion Science and Technology, 2017, 31(18): 1977-1997.
[37] Yaghoubi A, Nikje M M A. Silanization of multi-walled carbon nanotubes and the study of its effects on the properties of polyurethane rigid foam nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 338-344.
[38] Duc H M, Huu D N, Huu T T, et al. The effect of multi‐walled carbon nanotubes on the thermal conductivity and cellular size of polyurethane foam[J]. Advances in Polymer Technology, 2021, 2021: 1-8.
[39] 冯文静, 李守平, 陈雅君. 软质聚氨酯泡沫阻燃技术的研究进展[J]. 中国塑料, 2020, 34(3): 93-102.
[40] 邢凤钦, 张伟, 佟铭玉. 阻燃型硬质聚氨酯泡沫的研究进展[J]. 辽宁化工, 2021, 50(5): 650-653, 657.
[41] Maddalena L, Carosio F, Fina A. In situ assembly of DNA/graphene oxide nanoplates to reduce the fire threat of flexible foams[J]. Advanced Materials Interfaces, 2021, 8(21): 2101083.
[42] Hu J, Yang Z. Layer-by-layer self-assembly preparation and desalination performance of graphene oxide mem‐brane[J]. Water Supply, 2022, 22(1): 126-136.
[43] Ge L, Tan X, Sheng R, et al. Layer-by-layer self-assem‐bly of giant polyelectrolyte microcapsules templated by microbubbles as potential hydrophilic or hydrophobic drug delivery system[J]. Colloid and Interface Science Communications, 2022, 47: 100603.