专稿

智能电网的网络安全风险及应对策略

  • 岳芳 ,
  • 王雪珍 ,
  • 姜山
展开
  • 1. 中国科学院武汉文献情报中心, 武汉 430071;
    2. 科技大数据湖北省重点实验室, 武汉 430071;
    3. 中国科学院宁波材料技术与工程研究所, 宁波 315201;
    4. 甬江实验室, 宁波 315202
岳芳,副研究员,研究方向为能源科技战略情报,电子信箱:yuef@whlib.ac.cn

收稿日期: 2023-11-13

  修回日期: 2024-03-15

  网络出版日期: 2024-06-12

基金资助

中国科学院A类战略性先导科技专项(XDA29010500);中国科学院战略研究与决策支持系统建设专项(GHJ-ZLZX-2023-06)

Network security risks and new countermeasures under the smart grid environment

  • YUE Fang ,
  • WANG Xuezhen ,
  • JIANG Shan
Expand
  • 1. National Science Library (Wuhan), Chinese Academy of Sciences, Wuhan 430071, China;
    2. Hubei Key Laboratory of Big Data in Science and Technology, Wuhan 430071, China;
    3. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
    4. Yongjiang Laboratory, Ningbo 315202, China

Received date: 2023-11-13

  Revised date: 2024-03-15

  Online published: 2024-06-12

摘要

智能电网将网络和信息技术与电网融合以增强电力系统的可靠性、安全性和效率,但在高度信息化和互联环境下,智能电网面临着日益复杂多变的网络安全风险。概述了智能电网的概念和架构,指出其双向可交互性是与传统电网最大的区别。总结了智能电网的安全漏洞和面临的网络攻击,主要分为机密性攻击、完整性攻击和可用性攻击3类。总结回顾了机器学习、区块链、量子计算等增强智能电网网络安全的新策略,机器学习算法可增强电网故障检测和攻击识别的准确性和灵敏度,区块链技术通过其去中心化和防篡改特性为智能电网提供身份验证、数据安全、隐私保护等解决方案,量子计算在电网故障诊断和数据传输安全方面有巨大应用潜力。提出了未来的主要挑战和研究方向。

本文引用格式

岳芳 , 王雪珍 , 姜山 . 智能电网的网络安全风险及应对策略[J]. 科技导报, 2024 , 42(9) : 6 -16 . DOI: 10.3981/j.issn.1000-7857.2023.11.01692

Abstract

The smart grid integrates network and information technologies with the grid to enhance the reliability, security, and efficiency of the power system. However, in a highly digitalized and interconnected environment, the smart grid faces increasingly complex and variable network security risks. This paper outlines the concept and architecture of the smart grid, indicating that its biggest difference from the traditional grid is bidirectional interactivity. Then, the security vulnerabilities and cyber attacks are summarized in terms of three categories, namely confidentiality attacks, integrity attacks, and availability attacks. Then, new strategies for enhancing the network security of smart grid, such as machine learning, blockchain, quantum computing are reviewed. Machine learning algorithms can improve the accuracy and sensitivity of power grid fault detection and attack identification. Blockchain technology provides solutions for identity verification, data security, and privacy protection through its decentralized and tamper-resistant features. Quantum computing has significant application potential in power grid fault diagnosis and data transmission security. Finally, the major challenges and future research directions are prsented.

参考文献

[1] US Department of Energy. The smart grid[EB/OL]. [2023-08-04]. https://www.smartgrid.gov/the_smart_grid/smart_grid.html.
[2] US Department of Energy. Grid modernization initiative[EB/OL]. [2024-03-02]. https://www.energy.gov/gmi/gridmodernization-initiative.
[3] US Department of Energy. Building a better grid initiative[EB/OL]. (2022-01-12)[2024-01-03]. https://www.energy.gov/oe/articles/building-better-grid-initiative.
[4] EERA. EERA IP smart grids[EB/OL]. [2024-03-02]. https://eera-smartgrids.eu/.
[5] European Commission. Grids, the missing link-An EU action plan for grids[EB/OL]. (2023-11-28) [2024-01-03]. https://eur-lex.europa.eu/legal-content/EN/TXT/uri=COM%3A2023%3A757%3AFIN.
[6] 张晶, 叶筠英, 李彬, 等. 智能电网标准国际化战略研究[J]. 供用电, 2020, 37(3): 3-9.
[7] 国家能源局. 国家能源局关于加快推进能源数字化智能化发展的若干意见[EB/OL]. (2023-03-28)[2024-01-03]. https://www.gov.cn/zhengce/zhengceku/2023-04/02/content_5749758.htm?eqid=da02903f00041dfd00000003645-caedc.
[8] 黄训诚, 和萍, 崔光照, 等. 中国智能电网发展述评、展望与建议[J]. 轻工学报, 2016, 31(2): 54-65.
[9] 姜义平. 构建新型电力系统 打造数智化坚强电网[EB/OL]. (2024-02-22)[2024-02-22]. http://www.cnenergynews.cn/dianwang/2024/02/22/detail_20240222148484.html.
[10] 杨彬. 南方电网数字化转型和数字电网建设的进展、未来展望[EB/OL]. (2021-12-16)[2024-02-22]. https://news.bjx.com.cn/html/20211216/1193950.shtml.
[11] 辛保安. 加快构建新型电力系统为美丽中国建设赋动能[EB/OL]. (2024-03-04) [2024-03-06]. http://dzb.rmzxb.com.cn/rmzxbPaper/pc/con/202403/04/content_58092. html
[12]《南方电网新型电力系统发展报告(2021—2023)》发布[EB/OL]. (2023-10-10) [2024-02-02]. https://news.bjx.com.cn/html/20211216/1193950.shtml.
[13] NIST. Smart grid: A beginner's guide[EB/OL]. (2012-07-12)[2023-08-04]. https://www.nist.gov/el/smart-grid/about-smart-grid/smart-grid-beginners-guide.
[14] IEEE. About IEEE smart grid[EB/OL]. [2023-08-04]. https://smartgrid.ieee.org/about-ieee-smart-grid.
[15] IEC. Bringing intelligence to the grid[R]. Geneva: IEC, 2018.
[16] Dorji S, Stonier A A, Peter G, et al. An extensive critique on smart grid technologies: Recent advancements, key challenges, and future directions[J]. Technologies, 2023, 11(3): 81-101.
[17] NIST. NIST framework and roadmap for smart grid interoperability standards, release 3.0[EB/OL]. (2014-10-01)[2023-08-04]. https://www.nist.gov/system/files/documents/smartgrid/NIST-SP-1108r3.pdf.
[18] IEEE. IEEE smart grid domains & sub-domains[EB/OL]. [2023-08-04]. https://smartgrid.ieee.org/domains.
[19] Gunduz M Z, Das R. Cyber-security on smart grid: Threats and potential solutions[J]. Computer Networks, 2020, 169: 107094.
[20] Ding J G, Qammar A, Zhang Z M, et al. Cyber threats to smart grids: Review, taxonomy, potential solutions, and future directions[J]. Energies, 2022, 15(18): 6799-6835.
[21] Lázaro J, Astarloa A, Rodríguez M, et al. A survey on vulnerabilities and countermeasures in the communications of the smart grid[J]. Electronics, 2021, 10(16): 1881.
[22] Ericsson G N. Toward a framework for managing information security for an electric power utility-CIGRÉ experiences[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1461-1469.
[23] Titcomb J. Ukrainian blackout blamed on cyber-attack[EB/OL]. (2016-01-05) [2023-08-04]. https://www.telegraph.co.uk/technology/news/12082758/Ukrainian-blackout-blamed-on-cyber-attack-in-world-first.html.
[24] Sun C C, Hahn A, Liu C C. Cyber security of a power grid: State-of-the-art[J]. International Journal of Electrical Power & Energy Systems, 2018, 99: 45-56.
[25] 秦安. 秦安:伊朗核设施再度被“黑”有何警示[EB/OL]. (2021-04-14)[2023-08-04]. https://opinion.huanqiu.com/article/42i6mtP6qMB.
[26] Gunduz M Z, Das R. Analysis of cyber-attacks on smart grid applications[C]//Proceedings of International Conference on Artificial Intelligence and Data Processing(IDAP). Piscataway, NJ: IEEE, 2018: 1-5.
[27] Tan S, De D, Song W Z, et al. Survey of security advances in smart grid: A data driven approach[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 397-422.
[28] Shi H Z, Xie L B, Peng L. Detection of false data injection attacks in smart grid based on a new dimensionality-reduction method[J]. Computers & Electrical Engineering, 2021, 91: 107058.
[29] Che L, Liu X, Li Z Y, et al. False data injection attacks induced sequential outages in power systems[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1513-1523.
[30] Liu X, Li Z Y, Liu X D, et al. Masking transmission line outages via false data injection attacks[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(7): 1592-1602.
[31] Yan J, He H B, Zhong X N, et al. Q-learning-based vulnerability analysis of smart grid against sequential topology attacks[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(1): 200-210.
[32] Tan R, Nguyen H H, Foo E Y S, et al. Optimal false data injection attack against automatic generation control in power grids[C]//Proceedings of ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS). Piscataway, NJ: IEEE, 2016: 1-10.
[33] Yi P, Zhu T, Zhang Q Q, et al. A denial of service attack in advanced metering infrastructure network[C]//Proceedings of IEEE International Conference on Communications (ICC). Piscataway, NJ: IEEE, 2014: 10-14.
[34] Guo Y H, Ten C W, Hu S Y, et al. Modeling distributed denial of service attack in advanced metering infrastructure[C]//Proceedings of IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). Piscataway, NJ: IEEE, 2015: 1-5.
[35] Attia M, Senouci S M, Sedjelmaci H, et al. An efficient Intrusion Detection System against cyber-physical attacks in the smart grid[J]. Computers & Electrical Engineering, 2018, 68: 499-512.
[36] Taft J. Assessment of existing synchrophasor networks[EB/OL]. (2018-04-30)[2023-08-04]. https://www.naspi.org/sites/default/files/reference_documents/pnnl_27557_assess_existing_synchrophasor_net.pdf.
[37] Frincu M, Chelmis C, Noor M U, et al. Accurate and efficient selection of the best consumption prediction method in smart grids[C]//Proceedings of IEEE International Conference on Big Data (Big Data). Piscataway, NJ: IEEE, 2014: 721-729.
[38] Karimipour H, Geris S, Dehghantanha A, et al. Intelligent anomaly detection for large-scale smart grids[C]//Proceedings of IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). Piscataway, NJ: IEEE, 2019: 1-4.
[39] Karimipour H, Dehghantanha A, Parizi R M, et al. A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids [J]. IEEE Access, 2019, 7: 80778-80788.
[40] Tufail S, Batool S, Sarwat A I. False data injection impact analysis in AI-based smart grid[C]//Proceedings of Southeast Conference 2021. Piscataway, NJ: IEEE, 2021: 1-7.
[41] Mohammadpourfard M, Weng Y, Pechenizkiy M, et al. Ensuring cybersecurity of smart grid against data integrity attacks under concept drift[J]. International Journal of Electrical Power & Energy Systems, 2020, 119: 105947.
[42] 彭莎, 孙铭阳, 张镇勇, 等. 机器学习在电力信息物理系统网络安全中的应用[J]. 电力系统自动化, 2022, 46(9): 200-215.
[43] Ashrafuzzaman M, Das S, Chakhchoukh Y, et al. Detecting stealthy false data injection attacks in the smart grid using ensemble-based machine learning[J]. Computers & Security, 2020, 97: 101994.
[44] Wang Y F, Zhang Z H, Ma J H, et al. KFRNN: An effective false data injection attack detection in smart grid based on Kalman filter and recurrent neural network[J]. IEEE Internet of Things Journal, 2022, 9(9): 6893-6904.
[45] Wang S Y, Bi S Z, Zhang Y J A. Locational detection of the false data injection attack in a smart grid: A multilabel classification approach[J]. IEEE Internet of Things Journal, 2020, 7(9): 8218-8227.
[46] Sawas A M, Khani H, Farag H E Z. On the resiliency of power and gas integration resources against cyber attacks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3099-3110.
[47] Kwon S, Yoo H, Shon T. IEEE 1815.1-based power system security with bidirectional RNN-based network anomalous attack detection for cyber-physical system[J]. IEEE Access, 2020, 8: 77572-77586.
[48] Zhang Y, Wang J H, Chen B. Detecting false data injection attacks in smart grids: A semi-supervised deep learning approach[J]. IEEE Transactions on Smart Grid, 2021, 12(1): 623-634.
[49] Li Y C, Zhang P, Ma L Q. Denial of service attack and defense method on load frequency control system[J]. Journal of the Franklin Institute, 2019, 356(15): 8625-8645.
[50] Shan A L, Li Y C. Learning multilevel auto-encoders for DDoS attack detection in smart grid network[J]. IEEE Access, 2019, 7: 108647-108659.
[51] Abdulaal M J, Ibrahem M I, Mahmoud M M E A, et al. Real-time detection of false readings in smart grid AMI using deep and ensemble learning[J]. IEEE Access, 2022, 10: 47541-47556.
[52] Lepolesa L J, Achari S, Cheng L. Electricity theft detection in smart grids based on deep neural network[J]. IEEE Access, 2022, 10: 39638-39655.
[53] Camana Acosta M R, Ahmed S, Garcia C E, et al. Extremely randomized trees-based scheme for stealthy cyber-attack detection in smart grid networks[J]. IEEE Access, 2020, 8: 19921-19933.
[54] Ravikumar G, Govindarasu M. Anomaly detection and mitigation for wide-area damping control using machine learning[J]. IEEE Transactions on Smart Grid, 2024: 1.
[55] Singh V K, Govindarasu M. A cyber-physical anomaly detection for wide-area protection using machine learning[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3514-3526.
[56] Syed M H, Guillo-Sansano E, Wang Y, et al. Real-time coupling of geographically distributed research infrastructures: Taxonomy, overview, and real-world smart grid applications[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1747-1760.
[57] Kumari A, Patel M M, Shukla A, et al. ArMor: A data analytics scheme to identify malicious behaviors on Blockchain-based smart grid system[C]//Proceedings of GLOBECOM 2020-2020 IEEE Global Communications Conference. Piscataway, NJ: IEEE, 2020: 1-6.
[58] Samy S, Banawan K, Azab M, et al. Smart blockchainbased control-data protection framework for trustworthy smart grid operations[C]//Proceedings of IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). Piscataway, NJ: IEEE, 2021: 0963-0969.
[59] Abou E H Z, Hafid A, Khoukhi L. Blockchain meets AMI: Towards secure advanced metering infrastructures [C]//Proceedings of ICC 2020-2020 IEEE International Conference on Communications (ICC). Piscataway, NJ: IEEE, 2020: 1-6.
[60] Butt A S, Huda N U, Amin A A. Design of fault-tolerant control system for distributed energy resources based power network using Phasor Measurement Units [J]. Measurement and Control, 2023, 56(1/2): 269-286.
[61] Reijsbergen D, Maw A, Dinh T T A, et al. Securing smart grids through an incentive mechanism for blockchain-based data sharing[C]//Proceedings of the Twelfth ACM Conference on Data and Application Security and Privacy. New York: ACM, 2022: 191-202.
[62] Maw A, Adepu S, Mathur A. ICS-BlockOpS: Blockchain for operational data security in industrial control system[J]. Pervasive and Mobile Computing, 2019, 59: 101048.
[63] Li M, Hu D H, Lal C, et al. Blockchain-enabled secure energy trading with verifiable fairness in industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6564-6574.
[64] Ramanan P, Li D, Gebraeel N. Blockchain-based decentralized replay attack detection for large-scale power systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(8): 4727-4739.
[65] Ferrag M A, Maglaras L. DeepCoin: A novel deep learning and blockchain-based energy exchange framework for smart grids[J]. IEEE Transactions on Engineering Management, 2020, 67(4): 1285-1297.
[66] Samuel O, Javaid N. GarliChain: A privacy preserving system for smart grid consumers using blockchain[J]. International Journal of Energy Research, 2022, 46(15): 21643-21659.
[67] Kong P Y. A review of quantum key distribution protocols in the perspective of smart grid communication security[J]. IEEE Systems Journal, 2022, 16(1): 41-54.
[68] Ajagekar A, You F Q. Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems[J]. Applied Energy, 2021, 303: 117628.
[69] Alshowkan M, Evans P G, Starke M, et al. Authentication of smart grid communications using quantum key distribution[J]. Scientific Reports, 2022, 12(1): 12731.
[70] ORNL. ORNL, LANL-developed quantum technologies go the distance[EB/OL]. (2020-05-12) [2023-08-10]. https://www.ornl.gov/news/ornl-lanl-developed-quantum-technologies-go-distance.
[71] EPB. EPB quantum network powered by qubitekk accepting applications[EB/OL]. (2023-07-25) [2023-08-10]. https://epb. com/newsroom/press-releases/epb-quantum-network-accepting-applications.
[72] 王蕙蓉. 量子破解“电力孤岛”,赋能电网系统[EB/OL]. (2022-05-15) [2023-08-10]. https://www.thepaper.cn/newsDetail_forward_17797502.
[73] 孙冉冉, 余建斌.“量子加密”助力新型电力系统[EB/OL]. (2022-01-17) [2023-08-10]. http://finance.people.com.cn/n1/2022/0117/c1004-32332535.html.
文章导航

/