专题:关键技术与创新驱动

软体机械手关键技术研究进展

  • 付敏 ,
  • 王鹏 ,
  • 王成梦 ,
  • 曹众 ,
  • 陈见坤
展开
  • 东北林业大学机电工程学院, 哈尔滨 150040
付敏,教授,研究方向为创新设计理论、采摘机器人等,电子信箱:fumin1996@163.com

收稿日期: 2023-08-02

  修回日期: 2024-01-04

  网络出版日期: 2024-05-22

基金资助

国家自然科学基金面上项目(51975114)

Research progress on key technologies of soft manipulator

  • FU Min ,
  • WANG Peng ,
  • WANG Chengmeng ,
  • CAO Zhong ,
  • CHEN Jiankun
Expand
  • College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China

Received date: 2023-08-02

  Revised date: 2024-01-04

  Online published: 2024-05-22

摘要

软体机械手具有良好的环境适应性、灵活性和人机交互性,可应用于作物采摘、水下探索、医疗康复、野外救援、物品分拣等众多领域。综述了软体机械手的驱动方式、制造技术、构型,以及建模与控制方法等关键技术进展,分析了其目前存在的问题与难点,提出了未来软体机械手探索方向:制作材料智能化、提高控制精确度、探究新型驱动方式、仿生设计构型。

本文引用格式

付敏 , 王鹏 , 王成梦 , 曹众 , 陈见坤 . 软体机械手关键技术研究进展[J]. 科技导报, 2024 , 42(8) : 48 -62 . DOI: 10.3981/j.issn.1000-7857.2023.08.01178

Abstract

The soft manipulator has good environmental adaptability, flexibility and man-machine interaction, and can be used in many fields such as crop picking, underwater exploration, medical rehabilitation, field rescue, and item sorting. In this paper, the driving mode, manufacturing technology, configuration, modeling and control methods of soft manipulator and other key technologies are reviewed, the development status of related technologies in recent years is introduced, the existing problems and difficulties are analyzed, and the future development direction of soft manipulator is discussed.

参考文献

[1] Rus D, Tolley M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521:467-475.
[2] 吴枫,韩亚丽,李沈炎,等.柔性仿生驱动器研究综述[J].现代制造工程, 2020(7):146-156.
[3] Ilievski F, Mazzeo A D, Shepherd R F, et al. Soft robotics for chemists[J]. Angewandte Chemie (International Ed in English), 2011, 50(8):1890-1895.
[4] Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24(15):2163-2170.
[5] Sun H, Chen X P. Towards honeycomb PneuNets robots[M]//Robot Intelligence Technology and Applications 2. Cham:Springer International Publishing, 2014:331-340.
[6] Jiang H, Wang Z C, Jin Y S, et al. Hierarchical control of soft manipulators towards unstructured interactions[J]. International Journal of Robotics Research, 2021, 40(1):411-434.
[7] Guan Q H, Sun J, Liu Y J, et al. Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk[J]. Soft Robotics, 2020, 7(5):597-614.
[8] 田德宝,毕学文,张欣欣,等.变腔室气动软体机械手结构设计与实验[J].机床与液压, 2021, 49(11):109-112.
[9] 张宴.双气腔复合结构软体手指的设计与基础性能研究[D].天津:天津工业大学, 2021.
[10] Fatahillah M, Oh N, Rodrigue H. A novel soft bending actuator using combined positive and negative pressures[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:472.
[11] 高孟扬,王钰,刘环宇,等.单电机线驱动多指柔性外骨骼机械手设计[J].青岛大学学报(自然科学版), 2024, 37(1):79-84.
[12] Gunderman A, Collins J, Myers A, et al. Tendon-driven soft robotic gripper for blackberry harvesting[J]. IEEE Robotics and Automation Letters, 2022, 7(2):2652-2659.
[13] In H, Lee H, Jeong U, et al. Feasibility study of a slack enabling actuator for actuating tendon-driven soft wearable robot without pretension[C]//Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE, 2015:1229-1234.
[14] 赵连城,郑玉峰.形状记忆与超弹性镍钛合金的发展和应用[J].中国有色金属学报, 2004, 14(增刊1):323-326.
[15] She Y, Chen J, Shi H L, et al. Modeling and validation of a novel bending actuator for soft robotics applications[J]. Soft Robotics, 2016, 3(2):71-81.
[16] Lee J H, Chung Y S, Rodrigue H. Application of SMA spring tendons for improved grasping performance[J]. Smart Materials and Structures, 2019, 28(3):035006.
[17] Jeong J, Hyeon K, Han J, et al. Wrist assisting soft wearable robot with stretchable coolant vessel integrated SMA muscle[J]. ASME Transactions on Mechatronics, 2022, 27(2):1046-1058.
[18] Kim K J, Tadokoro S. Electroactive polymers for robotic applications[J]. Artificial Muscles and Sensors, 2007, 23:291.
[19] Qiu Y, Zhang E, Plamthottam R, et al. Dielectric elastomer artificial muscle:Materials innovations and device explorations[J]. Accounts of Chemical Research, 2019, 52(2):316-325.
[20] Kofod G, Wirges W, Paajanen M, et al. Energy minimization for self-organized structure formation and actuation[J]. Applied Physics Letters, 2007, 90(8):081916.
[21] 王树.基于介电弹性体驱动的柔性关节力学特性及设计方法研究[D].哈尔滨:哈尔滨工业大学, 2019.
[22] 李金嵘.介电弹性体驱动器在软体机器人领域的应用与设计研究[D].哈尔滨:哈尔滨工业大学, 2020.
[23] Xing Z G, Zhang J M, McCoul D, et al. A super-lightweight and soft manipulator driven by dielectric elastomers[J]. Soft Robotics, 2020, 7(4):512-520.
[24] Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators[J]. Advanced Materials, 2016, 28(2):231-238.
[25] 成悦.基于PVA微晶区的不对称分布构建智能水凝胶驱动器[D].太原:中北大学, 2022.
[26] Shiblee M N I, Ahmed K, Kawakami M, et al. 4D printing of shape-memory hydrogels for soft-robotic functions[J]. Advanced Materials Technologies, 2019, 4(8):1900071.
[27] Ma Y F, Ma S H, Yang W F, et al. Sundew-inspired simultaneous actuation and adhesion/friction control for reversibly capturing objects underwater[J]. Advanced Materials Technologies, 2019, 4(2):1800467.
[28] Chen L, Wei X S, Wang F, et al. In-situ polymerization for mechanical strong composite actuators based on anisotropic wood and thermoresponsive polymer[J]. Chinese Chemical Letters, 2022, 33(5):2635-2638.
[29] Zheng J, Xiao P, Le X X, et al. Mimosa inspired bilayer hydrogel actuator functioning in multi-environments[J]. Journal of Materials Chemistry C, 2018, 6(6):1320-1327.
[30] Kim D I, Song S, Jang S, et al. Untethered gripper-type hydrogel millirobot actuated by electric field and magnetic field[J]. Smart Materials and Structures, 2020, 29(8):085024.
[31] Wehner M, Truby R L, Fitzgerald D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617):451-455.
[32] Aubin C A, Choudhury S, Jerch R, et al. Electrolytic vascular systems for energy-dense robots[J]. Nature, 2019, 571(7763):51-57.
[33] 华德正,申玉瑞,彭来,等.磁流变软体机器人滚动-变形运动特性[J/OL].机械工程学报, 1-9[2024-03-20]. http://kns.cnki.net/kcms/detail/11.2187.TH.20231218.1103.034.html.
[34] 王雨涵.基于磁流变液驱动的变刚度仿生捕蝇草柔性抓手设计与实验研究[D].哈尔滨:东北林业大学, 2023.
[35] Dong X, Xu J W, Xu X Z, et al. Sunlight-driven continuous flapping-wing motion[J]. ACS Applied Materials&Interfaces, 2020, 12(5):6460-6470.
[36] 王震.基于光固化制造系统的光驱动微机器人的制备和操控研究[D].烟台:烟台大学, 2023.
[37] Li J F, Sun M J, Wu Z Q, et al. Design, analysis, and grasping experiments of a novel soft hand:Hybrid actuator using shape memory alloy actuators, motors, and electromagnets[J]. Soft Robotics, 2020, 7(3):396-407.
[38] Zhuo S Y, Zhao Z G, Xie Z X, et al. Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines[J]. Science Advances, 2020, 6(5):eaax1464.
[39] Deimel R, Brock O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2016, 35(1/2/3):161-185.
[40] 朱银龙,赵虎,苏海军,等.四指软体机械手机械特性分析与抓取试验[J].农业机械学报, 2022, 53(9):434-442.
[41] Chen Y L, Zhang J H, Gong Y J. Utilizing anisotropic fabrics composites for high-strength soft manipulator integrating soft gripper[J]. IEEE Access, 2019, 7:127416-127426.
[42] Yan Y D, Cheng C, Guan M J, et al. Texture identification and object recognition using a soft robotic hand innervated bio-inspired proprioception[J]. Machines, 2022, 10(3):173.
[43] 权家乐.仿人六指刚柔软耦合机械手设计与实验研究[D].哈尔滨:哈尔滨工业大学, 2022.
[44] Huang W K, Xiao J L, Xu Z P. A variable structure pneumatic soft robot[J]. Scientific Reports, 2020, 10(1):18778.
[45] 付敏,王成梦,郝镒林,等.变结构气动软体机械手的设计及试验研究[J].机床与液压, 2023, 51(13):7-13, 26.
[46] 李健,戴楚彦,王扬威,等.面向草莓抓取的气动四叶片软体抓手研制[J].哈尔滨工业大学学报, 2022, 54(1):105-113.
[47] Wang W, Ahn S H. Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping[J]. Soft Robotics, 2017, 4(4):379-389.
[48] 杨羽.面向果实采摘的仿生灵巧手结构设计与实验研究[D].镇江:江苏大学, 2022.
[49] Xie Z X, Domel A G, An N, et al. Octopus arm-inspired tapered soft actuators with suckers for improved grasping[J]. Soft Robotics, 2020, 7(5):639-648.
[50] Ranzani T, Gerboni G, Cianchetti M, et al. A bioinspired soft manipulator for minimally invasive surgery[J]. Bioinspiration&Biomimetics, 2015, 10(3):035008.
[51] Wang W, Li C Z, Cho M, et al. Soft tendril-inspired grippers:Shape morphing of programmable polymer-paper bilayer composites[J]. ACS Applied Materials&Interfaces, 2018, 10(12):10419-10427.
[52] 徐丰羽,郭义全,周映江,等.软体机器人的驱动器及制作方法研究综述[J].南京邮电大学学报(自然科学版), 2018, 38(4):69-80.
[53] Gong Z Y, Xie Z X, Yang X B, et al. Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm[C]//Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway, NJ:IEEE, 2016:509-514.
[54] 王永青,邓建辉,李特,等.软体机器人3D打印制造技术研究综述[J].机械工程学报, 2021, 57(15):186-198.
[55] 陈尤旭.面向软体机器人的软材料3D打印实验研究[D].苏州:苏州大学, 2020.
[56] Goh G L, Yeong W Y, Altherr J, et al. 3D printing of soft sensors for soft gripper applications[J]. Materials Today:Proceedings, 2022, 70:224-229.
[57] Lin M, Vatani M, Choi J W, et al. Compliant underwater manipulator with integrated tactile sensor for nonlinear force feedback control of an SMA actuation system[J]. Sensors and Actuators A:Physical, 2020, 315:112221.
[58] Yeong W Y, Goh G L, Goh G D, et al. 3D printing of soft grippers with multimaterial design:Towards shape conformance and tunable rigidity[J]. Materials Today:Proceedings, 2022, 70:525-530.
[59] 洪吉,刘伟庭,陈裕泉.软光刻技术[J].国外医学(生物医学工程分册), 2001(3):134-137.
[60] 刘伟庭.柔性微图形复制技术的研究[D].杭州:浙江大学, 2003.
[61] 费燕琼,庞武,于文博.气压驱动软体机器人运动研究[J].机械工程学报, 2017, 53(13):14-18.
[62] George Thuruthel T, Ansari Y, Falotico E, et al. Control strategies for soft robotic manipulators:A survey[J]. Soft Robotics, 2018, 5(2):149-163.
[63] Webster R J, Jones B A. Design and kinematic modeling of constant curvature continuum robots:A review[J]. International Journal of Robotics Research, 2010, 29(13):1661-1683.
[64] 张晗.气动软体机械手抓取性能研究[D].西安:西安理工大学,2019.
[65] 肖宇.气动软体机械手设计及实验研究[D].南京:东南大学, 2016.
[66] 周芳宇.气动软体机械手的优化设计[D].南京:东南大学, 2020.
[67] 朱晓光.气动软体机械手抓持力规划研究及结构优化设计[D].长沙:湖南大学, 2020.
[68] 邵冬冬,夏晓舟. Cosserat理论与模型的研究进展[J].低温建筑技术, 2014, 36(1):10-12.
[69] Renda F, Cacucciolo V, Dias J, et al. Discrete Cosserat approach for soft robot dynamics:A new piece-wise constant strain model with torsion and shears[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE, 2016:5495-5502.
[70] Renda F, Armanini C, Lebastard V, et al. A geometric variable-strain approach for static modeling of soft manipulators with tendon and fluidic actuation[J]. IEEE Robotics and Automation Letters, 2020, 5(3):4006-4013.
[71] 王田苗,郝雨飞,杨兴帮,等.软体机器人:结构,驱动,传感与控制[J].机械工程学报, 2017, 53(13):1-13.
[72] 闫继宏,石培沛,张新彬,等.软体机械臂仿生机理、驱动及建模控制研究发展综述[J].机械工程学报, 2018, 54(15):1-14.
[73] 许宗贵.仿生软体机械手的运动学建模与抓持规划[D].杭州:浙江工业大学, 2018.
[74] Chen J, Dang Y, Han J D. Offset-free model predictive control of a soft manipulator using the Koopman operator[J]. Mechatronics, 2022, 86:102871.
[75] Zou S Q, Lyu Y Y, Qi J M, et al. A deep neural network approach for accurate 3D shape estimation of soft manipulator with vision correction[J]. Sensors and Actuators A:Physical, 2022, 344:113692.
[76] 姜皓.基于蜂巢气动网络结构的软体机器人手臂设计、控制与应用的研究[D].合肥:中国科学技术大学, 2021.
[77] 董红兵.一种充气式软体全向弯曲模块关键技术研究[D].哈尔滨:哈尔滨工业大学, 2016.
[78] Chen Y L, Sun Q, Wang J, et al. Sliding mode control with feedforward compensation for a soft manipulator that considers environment contact constraints[J]. Journal of Marine Science and Engineering, 2023, 11(7):1438.
[79] Jin Y S, Wang Y F, Chen X T, et al. Model-less feedback control for soft manipulators[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York:ACM, 2017:2916-2922.
[80] You X K, Zhang Y X, Chen X T, et al. Model-free control for soft manipulators based on reinforcement learning[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York:ACM, 2017:2909-2915.
[81] Li P J, Wang G T, Jiang H, et al. A Q-learning control method for a soft robotic arm utilizing training data from a rough simulator[C]//Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway, NJ:IEEE, 2021:839-845.
[82] Thuruthel T G, Falotico E, Renda F, et al. Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators[J]. IEEE Transactions on Robotics, 2019, 35(1):124-134.
[83] Wang Q L, Zhou X H, Jiang H J, et al. Polyimide sensing layer for bending shape measurement in soft surgical manipulators[J]. Optik, 2019, 183:179-188.
[84] 刘会聪,杨梦柯,袁鑫,等.液态金属柔性感知的人机交互软体机械手[J].中国机械工程, 2021, 32(12):1470-1478.
[85] Tang X T, Li K, Liu Y X, et al. Coiled conductive polymer fiber used in soft manipulator as sensor[J]. IEEE Sensors Journal, 2018, 18(15):6123-6129.
[86] Feng Y B, Liu H, Zhu W H, et al. Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays[J]. Advanced Functional Materials, 2021, 31(46):2105264.
[87] Wang Y, Xia Y, Xiang P, et al. Protein-assisted freezetolerant hydrogel with switchable performance toward customizable flexible sensor[J]. Chemical Engineering Journal, 2022, 428:131171.
文章导航

/