[1] Rus D, Tolley M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521:467-475.
[2] 吴枫,韩亚丽,李沈炎,等.柔性仿生驱动器研究综述[J].现代制造工程, 2020(7):146-156.
[3] Ilievski F, Mazzeo A D, Shepherd R F, et al. Soft robotics for chemists[J]. Angewandte Chemie (International Ed in English), 2011, 50(8):1890-1895.
[4] Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24(15):2163-2170.
[5] Sun H, Chen X P. Towards honeycomb PneuNets robots[M]//Robot Intelligence Technology and Applications 2. Cham:Springer International Publishing, 2014:331-340.
[6] Jiang H, Wang Z C, Jin Y S, et al. Hierarchical control of soft manipulators towards unstructured interactions[J]. International Journal of Robotics Research, 2021, 40(1):411-434.
[7] Guan Q H, Sun J, Liu Y J, et al. Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk[J]. Soft Robotics, 2020, 7(5):597-614.
[8] 田德宝,毕学文,张欣欣,等.变腔室气动软体机械手结构设计与实验[J].机床与液压, 2021, 49(11):109-112.
[9] 张宴.双气腔复合结构软体手指的设计与基础性能研究[D].天津:天津工业大学, 2021.
[10] Fatahillah M, Oh N, Rodrigue H. A novel soft bending actuator using combined positive and negative pressures[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:472.
[11] 高孟扬,王钰,刘环宇,等.单电机线驱动多指柔性外骨骼机械手设计[J].青岛大学学报(自然科学版), 2024, 37(1):79-84.
[12] Gunderman A, Collins J, Myers A, et al. Tendon-driven soft robotic gripper for blackberry harvesting[J]. IEEE Robotics and Automation Letters, 2022, 7(2):2652-2659.
[13] In H, Lee H, Jeong U, et al. Feasibility study of a slack enabling actuator for actuating tendon-driven soft wearable robot without pretension[C]//Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ:IEEE, 2015:1229-1234.
[14] 赵连城,郑玉峰.形状记忆与超弹性镍钛合金的发展和应用[J].中国有色金属学报, 2004, 14(增刊1):323-326.
[15] She Y, Chen J, Shi H L, et al. Modeling and validation of a novel bending actuator for soft robotics applications[J]. Soft Robotics, 2016, 3(2):71-81.
[16] Lee J H, Chung Y S, Rodrigue H. Application of SMA spring tendons for improved grasping performance[J]. Smart Materials and Structures, 2019, 28(3):035006.
[17] Jeong J, Hyeon K, Han J, et al. Wrist assisting soft wearable robot with stretchable coolant vessel integrated SMA muscle[J]. ASME Transactions on Mechatronics, 2022, 27(2):1046-1058.
[18] Kim K J, Tadokoro S. Electroactive polymers for robotic applications[J]. Artificial Muscles and Sensors, 2007, 23:291.
[19] Qiu Y, Zhang E, Plamthottam R, et al. Dielectric elastomer artificial muscle:Materials innovations and device explorations[J]. Accounts of Chemical Research, 2019, 52(2):316-325.
[20] Kofod G, Wirges W, Paajanen M, et al. Energy minimization for self-organized structure formation and actuation[J]. Applied Physics Letters, 2007, 90(8):081916.
[21] 王树.基于介电弹性体驱动的柔性关节力学特性及设计方法研究[D].哈尔滨:哈尔滨工业大学, 2019.
[22] 李金嵘.介电弹性体驱动器在软体机器人领域的应用与设计研究[D].哈尔滨:哈尔滨工业大学, 2020.
[23] Xing Z G, Zhang J M, McCoul D, et al. A super-lightweight and soft manipulator driven by dielectric elastomers[J]. Soft Robotics, 2020, 7(4):512-520.
[24] Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators[J]. Advanced Materials, 2016, 28(2):231-238.
[25] 成悦.基于PVA微晶区的不对称分布构建智能水凝胶驱动器[D].太原:中北大学, 2022.
[26] Shiblee M N I, Ahmed K, Kawakami M, et al. 4D printing of shape-memory hydrogels for soft-robotic functions[J]. Advanced Materials Technologies, 2019, 4(8):1900071.
[27] Ma Y F, Ma S H, Yang W F, et al. Sundew-inspired simultaneous actuation and adhesion/friction control for reversibly capturing objects underwater[J]. Advanced Materials Technologies, 2019, 4(2):1800467.
[28] Chen L, Wei X S, Wang F, et al. In-situ polymerization for mechanical strong composite actuators based on anisotropic wood and thermoresponsive polymer[J]. Chinese Chemical Letters, 2022, 33(5):2635-2638.
[29] Zheng J, Xiao P, Le X X, et al. Mimosa inspired bilayer hydrogel actuator functioning in multi-environments[J]. Journal of Materials Chemistry C, 2018, 6(6):1320-1327.
[30] Kim D I, Song S, Jang S, et al. Untethered gripper-type hydrogel millirobot actuated by electric field and magnetic field[J]. Smart Materials and Structures, 2020, 29(8):085024.
[31] Wehner M, Truby R L, Fitzgerald D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617):451-455.
[32] Aubin C A, Choudhury S, Jerch R, et al. Electrolytic vascular systems for energy-dense robots[J]. Nature, 2019, 571(7763):51-57.
[33] 华德正,申玉瑞,彭来,等.磁流变软体机器人滚动-变形运动特性[J/OL].机械工程学报, 1-9[2024-03-20]. http://kns.cnki.net/kcms/detail/11.2187.TH.20231218.1103.034.html.
[34] 王雨涵.基于磁流变液驱动的变刚度仿生捕蝇草柔性抓手设计与实验研究[D].哈尔滨:东北林业大学, 2023.
[35] Dong X, Xu J W, Xu X Z, et al. Sunlight-driven continuous flapping-wing motion[J]. ACS Applied Materials&Interfaces, 2020, 12(5):6460-6470.
[36] 王震.基于光固化制造系统的光驱动微机器人的制备和操控研究[D].烟台:烟台大学, 2023.
[37] Li J F, Sun M J, Wu Z Q, et al. Design, analysis, and grasping experiments of a novel soft hand:Hybrid actuator using shape memory alloy actuators, motors, and electromagnets[J]. Soft Robotics, 2020, 7(3):396-407.
[38] Zhuo S Y, Zhao Z G, Xie Z X, et al. Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines[J]. Science Advances, 2020, 6(5):eaax1464.
[39] Deimel R, Brock O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2016, 35(1/2/3):161-185.
[40] 朱银龙,赵虎,苏海军,等.四指软体机械手机械特性分析与抓取试验[J].农业机械学报, 2022, 53(9):434-442.
[41] Chen Y L, Zhang J H, Gong Y J. Utilizing anisotropic fabrics composites for high-strength soft manipulator integrating soft gripper[J]. IEEE Access, 2019, 7:127416-127426.
[42] Yan Y D, Cheng C, Guan M J, et al. Texture identification and object recognition using a soft robotic hand innervated bio-inspired proprioception[J]. Machines, 2022, 10(3):173.
[43] 权家乐.仿人六指刚柔软耦合机械手设计与实验研究[D].哈尔滨:哈尔滨工业大学, 2022.
[44] Huang W K, Xiao J L, Xu Z P. A variable structure pneumatic soft robot[J]. Scientific Reports, 2020, 10(1):18778.
[45] 付敏,王成梦,郝镒林,等.变结构气动软体机械手的设计及试验研究[J].机床与液压, 2023, 51(13):7-13, 26.
[46] 李健,戴楚彦,王扬威,等.面向草莓抓取的气动四叶片软体抓手研制[J].哈尔滨工业大学学报, 2022, 54(1):105-113.
[47] Wang W, Ahn S H. Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping[J]. Soft Robotics, 2017, 4(4):379-389.
[48] 杨羽.面向果实采摘的仿生灵巧手结构设计与实验研究[D].镇江:江苏大学, 2022.
[49] Xie Z X, Domel A G, An N, et al. Octopus arm-inspired tapered soft actuators with suckers for improved grasping[J]. Soft Robotics, 2020, 7(5):639-648.
[50] Ranzani T, Gerboni G, Cianchetti M, et al. A bioinspired soft manipulator for minimally invasive surgery[J]. Bioinspiration&Biomimetics, 2015, 10(3):035008.
[51] Wang W, Li C Z, Cho M, et al. Soft tendril-inspired grippers:Shape morphing of programmable polymer-paper bilayer composites[J]. ACS Applied Materials&Interfaces, 2018, 10(12):10419-10427.
[52] 徐丰羽,郭义全,周映江,等.软体机器人的驱动器及制作方法研究综述[J].南京邮电大学学报(自然科学版), 2018, 38(4):69-80.
[53] Gong Z Y, Xie Z X, Yang X B, et al. Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm[C]//Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway, NJ:IEEE, 2016:509-514.
[54] 王永青,邓建辉,李特,等.软体机器人3D打印制造技术研究综述[J].机械工程学报, 2021, 57(15):186-198.
[55] 陈尤旭.面向软体机器人的软材料3D打印实验研究[D].苏州:苏州大学, 2020.
[56] Goh G L, Yeong W Y, Altherr J, et al. 3D printing of soft sensors for soft gripper applications[J]. Materials Today:Proceedings, 2022, 70:224-229.
[57] Lin M, Vatani M, Choi J W, et al. Compliant underwater manipulator with integrated tactile sensor for nonlinear force feedback control of an SMA actuation system[J]. Sensors and Actuators A:Physical, 2020, 315:112221.
[58] Yeong W Y, Goh G L, Goh G D, et al. 3D printing of soft grippers with multimaterial design:Towards shape conformance and tunable rigidity[J]. Materials Today:Proceedings, 2022, 70:525-530.
[59] 洪吉,刘伟庭,陈裕泉.软光刻技术[J].国外医学(生物医学工程分册), 2001(3):134-137.
[60] 刘伟庭.柔性微图形复制技术的研究[D].杭州:浙江大学, 2003.
[61] 费燕琼,庞武,于文博.气压驱动软体机器人运动研究[J].机械工程学报, 2017, 53(13):14-18.
[62] George Thuruthel T, Ansari Y, Falotico E, et al. Control strategies for soft robotic manipulators:A survey[J]. Soft Robotics, 2018, 5(2):149-163.
[63] Webster R J, Jones B A. Design and kinematic modeling of constant curvature continuum robots:A review[J]. International Journal of Robotics Research, 2010, 29(13):1661-1683.
[64] 张晗.气动软体机械手抓取性能研究[D].西安:西安理工大学,2019.
[65] 肖宇.气动软体机械手设计及实验研究[D].南京:东南大学, 2016.
[66] 周芳宇.气动软体机械手的优化设计[D].南京:东南大学, 2020.
[67] 朱晓光.气动软体机械手抓持力规划研究及结构优化设计[D].长沙:湖南大学, 2020.
[68] 邵冬冬,夏晓舟. Cosserat理论与模型的研究进展[J].低温建筑技术, 2014, 36(1):10-12.
[69] Renda F, Cacucciolo V, Dias J, et al. Discrete Cosserat approach for soft robot dynamics:A new piece-wise constant strain model with torsion and shears[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE, 2016:5495-5502.
[70] Renda F, Armanini C, Lebastard V, et al. A geometric variable-strain approach for static modeling of soft manipulators with tendon and fluidic actuation[J]. IEEE Robotics and Automation Letters, 2020, 5(3):4006-4013.
[71] 王田苗,郝雨飞,杨兴帮,等.软体机器人:结构,驱动,传感与控制[J].机械工程学报, 2017, 53(13):1-13.
[72] 闫继宏,石培沛,张新彬,等.软体机械臂仿生机理、驱动及建模控制研究发展综述[J].机械工程学报, 2018, 54(15):1-14.
[73] 许宗贵.仿生软体机械手的运动学建模与抓持规划[D].杭州:浙江工业大学, 2018.
[74] Chen J, Dang Y, Han J D. Offset-free model predictive control of a soft manipulator using the Koopman operator[J]. Mechatronics, 2022, 86:102871.
[75] Zou S Q, Lyu Y Y, Qi J M, et al. A deep neural network approach for accurate 3D shape estimation of soft manipulator with vision correction[J]. Sensors and Actuators A:Physical, 2022, 344:113692.
[76] 姜皓.基于蜂巢气动网络结构的软体机器人手臂设计、控制与应用的研究[D].合肥:中国科学技术大学, 2021.
[77] 董红兵.一种充气式软体全向弯曲模块关键技术研究[D].哈尔滨:哈尔滨工业大学, 2016.
[78] Chen Y L, Sun Q, Wang J, et al. Sliding mode control with feedforward compensation for a soft manipulator that considers environment contact constraints[J]. Journal of Marine Science and Engineering, 2023, 11(7):1438.
[79] Jin Y S, Wang Y F, Chen X T, et al. Model-less feedback control for soft manipulators[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York:ACM, 2017:2916-2922.
[80] You X K, Zhang Y X, Chen X T, et al. Model-free control for soft manipulators based on reinforcement learning[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York:ACM, 2017:2909-2915.
[81] Li P J, Wang G T, Jiang H, et al. A Q-learning control method for a soft robotic arm utilizing training data from a rough simulator[C]//Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway, NJ:IEEE, 2021:839-845.
[82] Thuruthel T G, Falotico E, Renda F, et al. Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators[J]. IEEE Transactions on Robotics, 2019, 35(1):124-134.
[83] Wang Q L, Zhou X H, Jiang H J, et al. Polyimide sensing layer for bending shape measurement in soft surgical manipulators[J]. Optik, 2019, 183:179-188.
[84] 刘会聪,杨梦柯,袁鑫,等.液态金属柔性感知的人机交互软体机械手[J].中国机械工程, 2021, 32(12):1470-1478.
[85] Tang X T, Li K, Liu Y X, et al. Coiled conductive polymer fiber used in soft manipulator as sensor[J]. IEEE Sensors Journal, 2018, 18(15):6123-6129.
[86] Feng Y B, Liu H, Zhu W H, et al. Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays[J]. Advanced Functional Materials, 2021, 31(46):2105264.
[87] Wang Y, Xia Y, Xiang P, et al. Protein-assisted freezetolerant hydrogel with switchable performance toward customizable flexible sensor[J]. Chemical Engineering Journal, 2022, 428:131171.