论文

高精度经颅直流电刺激对人体上肢前臂肌肉抗疲劳效果的研究

  • 李文华 ,
  • 侯雨鑫 ,
  • 董彤彤 ,
  • 夏雪莲 ,
  • 郭峰
展开
  • 1. 沈阳体育学院社会体育学院, 沈阳 110102;
    2. 沈阳体育学院研究生工作部, 沈阳 110102;
    3. 沈阳体育学院运动健康学院, 沈阳 110102
李文华,副教授,研究方向为体能训练理论与实践,电子信箱: 47284981@qq.com

收稿日期: 2023-09-17

  修回日期: 2023-12-25

  网络出版日期: 2024-05-10

基金资助

辽宁省自然科学基金面上项目(2022-MS-415);辽宁省教育厅基本科研项目重点项目(JYTZD2023133)

Study on anti-fatigue effect of high-definition transcranial direct current stimulation on forearm muscles of upper limbs

  • LI Wenhua ,
  • HOU Yuxin ,
  • DONG Tongong ,
  • XIA Xuelian ,
  • GUO Feng
Expand
  • 1. Social Sports School, Shenyang Sport University, Shenyang 110102, China;
    2. Department of Postgraduate, Shenyang Sport University, Shenyang 110102, China;
    3. College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China

Received date: 2023-09-17

  Revised date: 2023-12-25

  Online published: 2024-05-10

摘要

为研究高精度经颅直流电刺激(high-definition transcranial direct current stimulation,HD-tDCS)对人体前臂指屈肌的抗疲劳效果,以19名健康男性为研究对象,观察在其运动对侧大脑半球运动皮质区实施HD-tDCS后,右侧前臂指屈肌进行35%最大强度的静力性等长收缩时的抗疲劳效果。结果表明,HD-tDCS组受试者前臂指屈肌抗疲劳时间显著长于基线(Baseline)组和假刺激(Sham)组(P<0.05); Baseline组和Sham组受试者运动疲劳后报告的主观体力感觉等级水平显著高于HD-tDCS组(P<0.05); HD-tDCS组受试者在执行疲劳运动任务过程中,其前臂指屈肌表面肌电(surface electromyography,sEMG)信号的幅值水平低于Baseline组和Sham组受试者。证明在健康受试者的运动对侧大脑半球运动皮质区实施HD-tDCS后,能够有效延长其前臂指屈肌抗疲劳时间,同时能够显著减低运动时的疲劳感知程度。

本文引用格式

李文华 , 侯雨鑫 , 董彤彤 , 夏雪莲 , 郭峰 . 高精度经颅直流电刺激对人体上肢前臂肌肉抗疲劳效果的研究[J]. 科技导报, 2024 , 42(6) : 112 -120 . DOI: 10.3981/j.issn.1000-7857.2024.06.012

Abstract

This study aimed to investigate the anti-fatigue effect of high-definition transcranial direct current stimulation (HD-tDCS) on human forearm flexor finger muscle, in order to provide reference for the clinical application of HD-tDCS. In this study, 19 healthy male subjects were recruited to observe the anti-fatigue effect of HD-tDCS on the contralateral hemisphere motor cortex on the muscle of the right forearm flexor finger muscle during the fatigue induced by 35% maximal isokinetic voluntary contractions. Subjects were divided into Baseline, HD-tDCS, and Sham groups. Surface electromyographic (sEMG) signals were collected during the performance exercise task and rating of perceived exertion (RPE) was asked after task. The fatigue time of forearm flexors in HD-tDCS group was significantly longer than Baseline and Sham groups (P<0.05). The level of RPE reported after exercise in Baseline and Sham groups was significantly higher than that in the HD-tDCS group (P<0.05). The sEMG level of forearm digital flexor in HD-tDCS group was lower than that in Baseline and Sham groups during isometric contraction. Applying HD-tDCS on the primary motor cortex of the contralateral hemisphere motor cortex can effectively prolong the fatigue resistance time and reduce the fatigue perception of the flexor fingers of the forearm, suggesting that HD-tDCS can improve the muscle fatigue resistance and reduce the subjective fatigue feeling to a certain extent.

参考文献

[1] Chang L, Fu S, Li J, et al. Effects of compression running pants and treadmill running stages on knee proprioception and fatigue-related physiological responses in halfmarathon runners[J]. Frontiers in Physiology, 2022, 13:1-9.
[2] Pethick J, Tallent J. The neuromuscular fatigue-Induced loss of muscle force control[J]. Sports, 2022, 10(11):184.
[3] Maudrich T, Ragert P, Perrey S, et al. Single-session anodal transcranial direct current stimulation to enhance sport-specific performance in athletes:A systematic review and meta-analysis[J]. Brain Stimulation, 2022, 15(6):1517-1529.
[4] Kuo H I, Bikson M, Datta A, et al. Comparing cortical plasticity induced by conventional and high-definition 4×1 ring tDCS:A neurophysiological study[J]. Brain Stimulation, 2013, 6(4):644-648.
[5] Woods A J, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools[J]. Clinical Neurophysiology, 2016, 127(2):1031-1048.
[6] Cogiamanian F, Marceglia S, Ardolino G, et al. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas[J]. European Journal of Neuroscience, 2007, 26(1):242-250.
[7] Abdelmoula A, Baudry S, Duchateau J. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability[J]. Neuroscience, 2016, 322:94-103.
[8] Hikosaka M, Aramaki Y. Effects of bilateral transcranial direct current stimulation on simultaneous bimanual handgrip strength[J]. Frontiers in Human Neuroscience, 2021, 15:1-10.
[9] 王宝峰, 周俊鸿, 肖松林, 等. 高精度经颅直流电刺激对Y平衡任务下姿势控制表现的即刻影响[J]. 应用力学学报, 2022, 39(2):231-240.
[10] 肖松林, 周俊鸿, 王宝峰, 等. 高精度经颅直流电刺激对足部肌肉力量、踝关节运动觉及静态平衡的影响[J]. 体育科学, 2020, 40(5):42-51.
[11] Gallo G, Geda E, Codella R, et al. Effects of bilateral dorsolateral prefrontal cortex high-definition transcranial direct-current stimulation on physiological and performance responses at severe-intensity exercise domain in elite road cyclists[J]. International Journal of Sports Physiology and Performance, 2022, 17(7):1085-1093.
[12] Huang Y J, Wang S M, Chen C, et al. High-definition transcranial direct current with electrical theta burst on post-stroke motor rehabilitation:A pilot randomized controlled trial[J]. Neurorehabilitation and Neural Repair, 2022, 36(9):645-654.
[13] Zhan J, Yu C, Xiao S, et al. Effects of high-definition transcranial direct current stimulation on the corticalmuscular functional coupling and muscular activities of ankle dorsi-plantarflexion under running-induced fatigue[J]. Frontiers in Physiology, 2023, 14:1-11.
[14] Guo F, Sun Y J, Zhang R H. Perceived exertion during muscle fatigue as reflected in movement-related cortical potentials:An event-related potential study[J]. Neuroreport, 2017, 28(3):115-122.
[15] Ushiyama J, Katsu M, Masakado Y, et al. Muscle fatigue-induced enhancement of corticomuscular coherence following sustained submaximal isometric contraction of the tibialis anterior muscle[J]. Journal of Applied Physiology, 2011, 110(5):1233-1240.
[16] Williams P S, Hoffman R L, Clark B C. Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction[J]. PLoS One, 2013, 8(12):1-11.
[17] Woods A J, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools[J]. Clinical Neurophysiology, 2016, 127(2):1031-1048.
[18] Zappasodi F, Musumeci G, Navarra R, et al. Safety and effects on motor cortex excitability of five anodal transcranial direct current stimulation sessions in 24 hours[J]. Neurophysiologie Clinique, 2019, 49(1):19-25.
[19] Angius L, Pageaux B, Hopker J, et al. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors[J]. Neuroscience, 2016, 339:363-375.
[20] Brunoni A R, Nitsche M A, Bolognini N, et al. Clinical research with transcranial direct current stimulation (tDCS):Challenges and future directions[J]. Brain Stimulation, 2012, 5(3):175-195.
[21] Abdelmoula A, Baudry S, Duchateau J. Anodal transcranial direct current stimulation does not influence the neural adjustments associated with fatiguing contractions in a hand muscle[J]. European Journal of Applied Physiology, 2018, 119:597-609.
[22] Kuo H I, Bikson M, Datta A, et al. Comparing cortical plasticity induced by conventional and high-definition 4×1 ring tDCS:A neurophysiological study[J]. Brain Stimulation, 2013, 6(4):644-648.
[23] Pollastri L, Gallo G, Zucca M, et al. Bilateral dorsolateral prefrontal cortex high-definition transcranial directcurrent stimulation improves time-trial performance in elite cyclists[J]. International Journal of Sports Physiology and Performance, 2021, 16(2):224-231.
[24] Boggio P S, Alonso-Alonso M, Mansur C G, et al. Hand function improvement with low-frequency repetitive transcranial magnetic stimulation of the unaffected hemisphere in a severe case of stroke[J]. American Journal of Physical Medicine and Rehabilitation, 2006, 85(11):927-956.
[25] Nitsche M A, Doemkes S, Karaköse T, et al. Shaping the effects of transcranial direct current stimulation of the human motor cortex[J]. Journal of Neurophysiology, 2007, 97(4):3109-3126.
[26] Lattari E, Oliveira B R R, Monteiro Júnior R S, et al. Acute effects of single dose transcranial direct current stimulation on muscle strength:A systematic review and meta-analysis[J]. PLoS One, 2018, 13(12):1-19.
[27] Oki K, Mahato N K, Nakazawa M, et al. Preliminary evidence that excitatory transcranial direct current stimulation extends time to task failure of a sustained, submaximal muscular contraction in older adults[J]. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 2016, 71(8):1109-1120.
[28] Foerster B R, Nascimento T D, Deboer M, et al. Excitatory and inhibitory brain metabolites as targets of motor cortex transcranial direct current stimulation therapy and predictors of its efficacy in fibromyalgia[J]. Arthritis Rheumatology, 2015, 67(2):576-581.
[29] Lebesque L, Scaglioni G, Martin A. The impact of submaximal fatiguing exercises on the ability to generate and sustain the maximal voluntary contraction[J]. Frontiers in Physiology, 2022, 13:1-13.
[30] Wang L, Wang C, Yang H, et al. Halo sport transcranial direct current stimulation improved muscular endurance performance and neuromuscular efficiency during an isometric submaximal fatiguing elbow flexion tas[J]. Frontiers in Human Neuroscience, 2022, 16:1-12.
文章导航

/