综述

稻纵卷叶螟化学农药减量增效防治技术进展

  • 陈澄宇 ,
  • 赵云霞 ,
  • 唐艺婷 ,
  • 张学峰 ,
  • 张凯 ,
  • 车国静 ,
  • 朱庆 ,
  • 张霄 ,
  • 刘媛 ,
  • 刘贤金
展开
  • 1. 江苏徐淮地区淮阴农业科学研究所, 国家农业科学淮安观测实验站, 淮安 223001;
    2. 江苏省农业科学院农产品质量安全与营养研究所, 江苏省食品质量安全重点实验室, 南京 210014
陈澄宇,助理研究员,研究方向为害虫绿色防控技术,电子信箱: chenchengyu@126.com;赵云霞(共同第一作者),研究实习员,研究方向为害虫绿色防控技术,电子信箱: zhaoyx2021@126.com

收稿日期: 2023-08-02

  修回日期: 2023-09-25

  网络出版日期: 2024-05-10

基金资助

江苏省产学研合作项目(BY2022984);江苏省自主创新项目(CX(21)3054);江苏省自然科学基金青年项目(BK20230290);中国博士后科学基金项目(2022M721400);淮安市农业科学院科研发展基金项目(HNY202109)

Progresses of pesticide reduction techniques and the synergistic effects on the control of rice leaffolders Cnaphalocrocis medinalis

  • CHEN Chengyu ,
  • ZHAO Yunxia ,
  • TANG Yiting ,
  • ZHANG Xuefeng ,
  • ZHANG Kai ,
  • CHE Guojing ,
  • ZHU Qing ,
  • ZHANG Xiao ,
  • LIU Yuan ,
  • LIU Xianjin
Expand
  • 1. Huaiyin Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, China National Agricultural Science Observation and Experiment Station, Huai'an 223001, China;
    2. Jiangsu Provincial Key Laboratory of Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Received date: 2023-08-02

  Revised date: 2023-09-25

  Online published: 2024-05-10

摘要

稻纵卷叶螟(Cnaphalocrocis medinalis)是水稻上最具破坏性的害虫之一。综述了稻纵卷叶螟的危害发生、抗药性和化学农药减量增效技术进展。针对稻纵卷叶螟防治,建议在做好科学选种、科学水肥管理、准确预测预报基础上,结合生态调控、理化诱控和生物防控等绿色防控技术,并通过合理选择高效杀虫剂、助剂和高效施药药械以及加强绿色防控基地的示范作用,达到稻纵卷叶螟农药减量增效的目的。

本文引用格式

陈澄宇 , 赵云霞 , 唐艺婷 , 张学峰 , 张凯 , 车国静 , 朱庆 , 张霄 , 刘媛 , 刘贤金 . 稻纵卷叶螟化学农药减量增效防治技术进展[J]. 科技导报, 2024 , 42(6) : 79 -85 . DOI: 10.3981/j.issn.1000-7857.2024.06.009

Abstract

Cnaphalocrocis medinalis is one of the most destructive pests on rice. Chemical control is an effective method to control this pest insect, but excessive use of chemical pesticides will increase the insecticide resistance and pollute the environment and ecology, so the control technology of chemical pesticide reduction and efficiency enhancement is particularly important. In this paper, the occurrence of C. medinalis, its resistance to insecticides and the technology of reducing and increasing the effect of chemical insecticides were reviewed. On the basis of scientific seed selection, scientific water and fertilizer management and accurate forecast, the control of C. medinalis was combined with green control technologies such as ecological regulation, physical and chemical control and biological control, and through the rational selection of high-efficiency pesticides, additives and high-efficiency pesticide application equipment, and enhance the demonstration role of green control demonstration base. As a result, the purpose of reducing the dosage and increasing the efficiency of pesticide would be achieved.

参考文献

[1] Yang Y, Liu X, Xu H, et al. Effects of host plant and insect generation on shaping of the gut microbiota in the rice leaffolder, Cnaphalocrocis medinalis[J]. Frontiers in Microbiology, 2022, 13:824224.
[2] Li Z, Shao X, Lee P W, et al. Green pesticide R&D in China[J]. Journal of Agricultural and Food Chemistry, 2023, 71(14):5417-5418.
[3] 杨普云, 王凯, 厉建萌, 等. 以农药减量控害助力农业绿色发展[J]. 植物保护, 2018, 44(5):95-100.
[4] Padmavathi C, Katti G, Padmakumari A P, et al. The effect of leaffolder Cnaphalocrocis medinalis (Guenee)[Lepidoptera:Pyralidae] injury on the plant physiology and yield loss in rice[J]. Journal of Applied Entomology, 2013, 137(4):249-256.
[5] 包云轩, 曹云, 谢晓金, 等. 中国稻纵卷叶螟发生特点及北 迁的 大气 背景[J]. 生态 学报, 2015, 35(11):3519-3533.
[6] Kumari A, Prasad R. Impact of abiotic factors on incidence of rice leaf folder (Cnaphalocrocis medinalis Guenee) in agro-climatic condition of Ranchi, Jharkhand[J]. Journal of Eco-friendly Agriculture, 2022(1):17.
[7] Li C M, Xu J, Liu Q, et al. Potential influence of carbohydrate and amino acid intake by adults on the population dynamics of Cnaphalocrocis medinalis (Lepidoptera:Crambidae)[J]. Journal of Integrative Agriculture, 2021, 20(7):1889-1897.
[8] Zheng X, Ren X, Su J. Insecticide Susceptibility of Cnaphalocrocis medinalis (Lepidoptera:Pyralidae) in China[J]. Journal of Economic Entomology, 2011, 104(2):653-658.
[9] Zhang S K, Ren X B, Wang Y C, et al. Resistance in Cnaphalocrocis medinalis (Lepidoptera:Pyralidae) to new chemistry insecticides[J]. Journal of Economic Entomology, 2014, 107(2):815-820.
[10] 李增鑫, 李亮, 朱坤淼, 等. 华中地区稻纵卷叶螟对7种杀虫剂的敏感性监测[J]. 华中农业大学学报, 2021, 40(2):130-141.
[11] 任宗杰, 秦萌, 郭永旺, 等. 2021年全国农业有害生物抗药性监测报告与治理对策(水稻、玉米部分)[J]. 中国植保导刊, 2022, 42(3):54-60.
[12] Sun Y, Liu S, Ling Y, et al. Insecticide resistance monitoring of Cnaphalocrocis medinalis (Lepidoptera:Pyralidae) and its mechanism to chlorantraniliprole[J]. Pest Management Science, 2023, 79(9):3290-3299.
[13] Punithavalli M, Muthukrishnan N M, Rajkuma M B. Defensive responses of rice genotypes for resistance against rice leaffolder Cnaphalocrocis medinalis[J]. Rice Science, 2013, 20(5):363-370.
[14] Punithavalli M, Muthukrishnan N M, Rajkumar M B. Influence of rice genotypes on folding and spinning behaviour of leaffolder (Cnaphalocrocis medinalis) and its interaction with leaf damage[J]. Rice Science, 2013, 20(6):442-450.
[15] Ge L, Wan D, Xu J, et al. Effects of nitrogen fertilizer and magnesium manipulation on the Cnaphalocrocis medinalis (Lepidoptera:Pyralidae)[J]. Journal of Economic Entomology, 2013, 106(1):196-205.
[16] Javvaji S, Telugu M U, Venkata R D B, et al. Characterization of resistance to rice leaf folder, Cnaphalocrocis medinalis, in mutant Samba Mahsuri rice lines[J]. Entomologia Experimentalis et Applicata, 2021, 169(9):859-875.
[17] Rizwan M, Atta B, Rizwan M, et al. Silicon plays an effective role in integrated pest management against rice leaffolder Cnaphalocrocis medinalis Guenée (Lepidoptera:Pyralidae)[J]. Pakistan Journal of Zoology, 2021, 54:569-576.
[18] Han Y, Lei W, Wen L, et al. Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera:Pyralidae)[J]. PLoS One, 2015, 10(4):e120557.
[19] Ye M, Song Y, Long J, et al. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38):E3631-E3639.
[20] Ge L Q, Wan D J, Xu J, et al. Effects of nitrogen fertilizer and magnesium manipulation on the Cnaphalocrocis medinalis (Lepidoptera:Pyralidae)[J]. Journal of Economic Entomology, 2013, 106(1):196-205.
[21] 杨亚军, 徐红星, 郑许松, 等. 中国水稻纵卷叶螟防控技术进展[J]. 植物保护学报, 2015, 42(5):691-701.
[22] 卜锋, 包志军, 徐优良, 等. 稻纵卷叶螟测报技术改进探讨[J]. 中国植保导刊, 2012, 32(7):42-45.
[23] 李宽, 郑能文, 蒋敏华, 等. 不同监测方法对水稻稻纵卷叶螟的监测效果[J]. 浙江农业科学, 2022, 63(10):2364-2367.
[24] 陆佳浩, 沈方圆, 郑许松, 等. 稻纵卷叶螟食诱剂在水稻上的应用研究初报[J]. 中国稻米, 2022, 28(6):110-112.
[25] 葛温伯, 胡高, 陆明红, 等. 适用于我国的稻纵卷叶螟长期预测模型[J]. 植物保护学报, 2020, 47(2):403-416.
[26] 周晨, 张海波, 杨荣明, 等. 江苏省稻纵卷叶螟智能性诱监测应用效果探讨[J]. 中国植保导刊, 2023, 43(3):28-32.
[27] 赵景, 蔡万伦, 沈栎阳, 等. 水稻害虫绿色防控技术研究的发展现状及展望[J]. 华中农业大学学报, 2022, 41(1):92-104.
[28] 钟玲, 郭年梅, 施伟韬, 等. 江西水稻农药减量技术集成优化与推广应用[J]. 中国植保导刊, 2019, 39(5):84-86.
[29] 董阳辉, 张信岳, 陈宝忠, 等. 佳多频振式杀虫灯对农林害虫的防治效果[J]. 浙江农业科学, 2011(3):636-640.
[30] Mcneil N J. Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps[J]. Annual Review of Entomology, 1991, 36(1):407-430.
[31] 朱凤, 程金金, 张国, 等. 江苏水稻生产全程简约化绿色防控策略研究与应用[J]. 中国植保导刊, 2021, 41(1):94-101.
[32] 杨志香, 朱凤, 王健生, 等. 食诱剂和性诱剂对稻纵卷叶螟的防控效果[J]. 中国植保导刊, 2022, 42(2):38-40.
[33] Aggarwal N, Sharma S, Jalali S K. On-farm impact of biocontrol technology against rice stem borer, Scircophaga incertulas (Walker) and rice leaf folder Cnaphalocrocis medinalis (Guenee) in aromatic rice[J]. Entomologia Generalis, 2016, 36(2):137-148.
[34] Gurr G M, Read D M, Catindig J L A, et al. Parasitoids of the rice leaffolder Cnaphalocrocis medinalis and prospects for enhancing biological control with nectar plants[J]. Agricultural and Forest Entomology, 2012, 14(1):1-12.
[35] 章玉苹, 黄炳球. 稻纵卷叶螟天敌的保护与利用[J]. 昆虫天敌, 2000, 22(1):38-44.
[36] 王蓉, 肖卫平, 邵昌余, 等. 人工释放稻螟赤眼蜂防治稻纵卷叶螟应用技术研究[J]. 中国植保导刊, 2017, 37(11):46-48.
[37] Ramasubramanian R, Karthi S, Senthil-Nathan S, et al. Effect of bacterial toxin identified from the Bacillus subtilis against the Cnaphalocrocis medinalis Guenée (Lepidoptera:Crambidae)[J]. Toxin Reviews, 2023, 42(1):264-274.
[38] Yang Y, Lu K, Qian J, et al. Identification and characterization of ABC proteins in an important rice insect pest, Cnaphalocrocis medinalis unveil their response to Cry1C toxin[J]. International Journal of Biological Macromolecules, 2023, 237:123949.
[39] 刘蓉, 赵薇, 农向群, 等. 生物杀虫剂组合在有机水稻种植中的作用效果[J]. 植物保护, 2023, 49(3):310-316.
[40] Liu Q, Li C, Han G, et al. Sub-lethal effect of Cnaphalocrocis medinalis granulovirus to the growth, reproduction and physiology of host[J]. Chinese Journal of Biological Control, 2022, 38(4):982.
[41] Han G, Liu Q, Li C, et al. Transcriptome sequencing reveals Cnaphalocrocis medinalis against baculovirus infection by oxidative stress[J]. Molecular Immunology, 2021, 129:63-69.
[42] Hong M, Peng G, Keyhani N O, et al. Application of the entomogenous fungus, Metarhizium anisopliae, for leafroller (Cnaphalocrocis medinalis) control and its effect on rice phyllosphere microbial diversity[J]. Applied Microbiology and Biotechnology, 2017, 101(2):6793-6807.
[43] Chen M, Zhao J Z, Ye G Y, et al. Impact of insect-resistant transgenic rice on target insect pests and non-target arthropods in China[J]. Insect Science, 2010, 13(6):409-420.
[44] Chen Y, Li M, Islam I, et al. Allelic-specific expression in relation to Bombyx mori resistance to Bt toxin[J]. Insect Biochemistry and Molecular Biology, 2014, 54:53-60.
[45] 郭瑞光, 刘昌敏, 罗文辉, 等. 不同生物农药防治稻纵卷叶螟幼虫田间药效试验[J]. 湖北植保, 2021(6):27-28.
[46] 朱凤, 杨爱国, 吴惠秋, 等. 虾稻共作田安全用药解决方案初探[J]. 中国农技推广, 2020, 36(9):70-76.
[47] 汪勇, 曾涛, 江仕龙, 等. 稻蛙绿色生态种养工程中基础设施建设问题探讨[J]. 中国植保导刊, 2020, 40(8):95-98.
[48] 朱凤姑, 丰庆生, 诸葛梓. 稻鸭生态结构对稻田有害生物群落的控制作用[J]. 浙江农业学报, 2004(1):41-45.
[49] Alvi S M, Ali M A, Chaudhary S, et al. Population trends and chemical control of rice leaf folder, Cnaphalocrocis medinalis on rice crop[J]. International Journal of Agriculture & Biology, 2003, 5(4):615-617.
[50] 金德锐. 水稻对稻纵卷叶螟危害补偿作用的测定[J]. 植物保护学报, 1984(1):1-7.
[51] 胡健, 谷莉莉, 仇学平, 等. 四唑虫酰胺对水稻稻纵卷叶螟的防治效果[J]. 现代农药, 2022, 21(5):70-72.
[52] 吴琳, 陈永林, 笪骏, 等. 短稳杆菌等对水稻稻纵卷叶螟的防效试验[J]. 农业装备技术, 2019, 45(1):38-39.
[53] Liu Y, Jiang F, Zhang Y, et al. Phosphate-modified cellulose/chitosan with high drug loading for effective prevention of rice leaffolder (Cnaphalocrocis medinalis) outbreaks in fields[J]. International Journal of Biological Macromolecules, 2023:125145.
[54] 张浩. 水稻病虫害农药减量控害技术[J]. 农业工程, 2020, 10(10):110-114.
[55] Sambaiah A, Reddy A V, Prasanthi L, et al. Development of a plant protection UAV and evaluating its efficacy in managing rice leaf folder (Cnaphalocrocis medinalis Guenee)[J]. The Pharma Innovation Journal, 2022, 10(11):1155-1163.
[56] 黄清臻. 信息化和智能化技术在有害生物防控中的应用[J]. 中华卫生杀虫药械, 2021, 27(3):193-197.
[57] Chen T, Wang R, Du J, et al. CMRD-Net:A deep learning-based Cnaphalocrocis medinalis damage symptom rotated detection framework for in-field survey[J]. Frontiers in Plant Science, 2023, 14:1180716.
[58] Adhikari B, Senapati R, Mohapatra M, et al. Detection of rice leaf folder, Cnaphalocrocis medinalis (Guenée) (Lepidoptera:Crambidae) infestation using groundbased hyperspectral radiometry[J]. Current Science, 2023, 124(8):964.
文章导航

/