专题:2023年科技热点回眸

2023年网络空间安全科技热点回眸

  • 冯登国 ,
  • 连一峰
展开
  • 中国科学院软件研究所, 北京 100190
冯登国,研究员,中国科学院院士,研究方向为网络空间安全,电子信箱:fengdg@263.net

收稿日期: 2023-12-23

  修回日期: 2024-01-03

  网络出版日期: 2024-04-09

基金资助

国家重点研发计划项目(2020YFB1806504)

Review of 2023 cybersecurity technology hotspots

  • FENG Dengguo ,
  • LIAN Yifeng
Expand
  • Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2023-12-23

  Revised date: 2024-01-03

  Online published: 2024-04-09

摘要

2023年,美国、欧洲、澳大利亚、日本、韩国、印度等国家或地区陆续发布网络空间安全国家政策和战略计划。与此同时,以APT攻击、勒索攻击、供应链攻击、新型网络攻击、移动端攻击为代表的高隐蔽性、高破坏性攻击活动频发,对全球网络空间带来严重安全威胁。零信任、机密计算、隐私计算、弹性安全技术蓬勃发展,量子密钥分发和抗量子密码技术持续取得技术创新和突破,生成式人工智能为网络安全开创了全新的发展空间,网络空间安全领域正面临前所未有的发展机遇和应用前景。

本文引用格式

冯登国 , 连一峰 . 2023年网络空间安全科技热点回眸[J]. 科技导报, 2024 , 42(1) : 232 -244 . DOI: 10.3981/j.issn.1000-7857.2024.01.015

Abstract

In 2023, countries such as the United States, Europe, Australia, Japan, South Korea, and India successively released national policies and strategic plans for cybersecurity, and the strategic position of cybersecurity was becoming increasingly prominent and constantly improving. At the same time, high covert and destructive attack activities represented by APT attacks,ransomware attacks, supply chain attacks, new network attacks, and mobile attacks were frequent, posing serious security threats to the global cyberspace. Zero trust, confidential computing, privacy computing, and resilient security technologies were flourishing. Quantum key distribution and anti quantum cryptography continued to achieve technological innovation and breakthroughs. Generative artificial intelligence created a new development space for cybersecurity, and the field of cybersecurity was facing unprecedented development opportunities and application prospects.

参考文献

[1] 2023年以来日自卫队加速网络作战力量建设主要动向[EB/OL].(2023-07-11)[2023-12-09]. https://www.sohu.com/a/696748160_100040985.
[2] 由“被动防护”向“应对作战”转变韩国网络战战略出现拐点[N/OL].(2023-11-29)[2023-12-09]. http://www.81.cn/szb_223187/gfbszbxq/index.html?paperDate=2023-11-29&paperNumber=04&articleid=920370.
[3] 印度政府组建“网络突击队”,加强网络安全工作[EB/OL].[2023-12-09]. https://www.secrss.com/articles/59942.
[4] 全球高级持续性威胁(APT)2023年中报告[EB/OL].[2023-12-12]. https://www.qianxin.com/threat/reportdetail?report_id=295.
[5] Vulnerability disclosure policy platform annual report2022[EB/OL].[2023-12-12]. https://www.commerce.gov/vulnerability-disclosure-policy.
[6] 警惕一些境外SDK背后的“数据间谍”窃密[EB/OL].(2023-10-27)[2023-12-12]. https://mp.weixin.qq.com/s/xq_0nAxzuZ4t0HLXLy8BEg.
[7] CCF. 2021-2022中国计算机科学技术发展报告[M].北京:机械工业出版社, 2023.
[8] 工业和信息化部关于印发“十四五”软件和信息技术服务业发展规划的通知[EB/OL].[2023-12-12]. https://www.miit.gov.cn/cms_files/filemanager/1226211233/attach/20224/b1a5229d377c410abf08b46b096249b7.pdf.
[9] 浅析美军“雷霆穹顶”零信任项目[EB/OL].[2023-12-11]. https://www.sohu.com/a/652865383_120319119.
[10] Zero trust maturity model[EB/OL].[2023-12-04]. https://www.cisa.gov/sites/default/files/2023-04/zero_trust_maturity_model_v2_508.pdf.
[11] 2023零信任现状报告[EB/OL].[2023-12-11]. https://www.fortinet. com/cn/demand/gated/report-state-of-zerotrust.
[12] 零信任发展研究报告(2023年)[EB/OL].[2023-12-11].http://www.caict.ac.cn/kxyj/qwfb/ztbg/202308/P0202308-28402611317149.pdf.
[13] Cost of a data breach 2023[EB/OL].[2023-11-28]. https://www.ibm.com/reports/data-breach.
[14] Jacobson J. How Privacy enhancing technologies impact business, individuals and society[EB/OL].(2023-10-25)[2023-11-28]. https://www.weforum.org/agenda/2023/10/the-impact-of-privacy-enhancing-technologies-pet-onbusiness-individuals-and-society.
[15] Bartock M, Souppaya M, Wheeler J, et al. NIST Interagency Report NIST IR 8320D ipd hardware enabled security:Hardware-based confidential computing initial public draft[EB/OL].[2023-12-11]. https://nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8320D.ipd.pdf.
[16] 工业和信息化部等十六部门关于促进数据安全产业发展的指导意见(工信部联网安[2022]182号)[EB/OL].[2023-12-11]. https://www.gov. cn/zhengce/zhengceku/2023-01/15/content_5737026.htm.
[17] 隐私计算应用研究报告(2023年)[EB/OL].[2023-11-28]. http://www.360doc.com/content/23/0818/21/224530_1093009750.shtml.
[18] VMware与其他行业领导者共同推广机密计算[EB/OL].[2023-06-30]. https://www.c114.com.cn/news/211/a123-6172.html.
[19] Nvidia confidential computing[EB/OL].[2023-12-11].https://www.nvidia.com/en-us/data-center/solutions/confidential-computing.
[20] Zhang Y M, Hu Y X, Ning Z Y, et al. Shelter:Extending arm CCA with isolation in user space[C]//32nd USENIX Security Symposium(USENIX Security 23). Berkeley:USENIX Association, 2023:6257-6274.
[21] Drean J, Gomez-Garcia M, Bourgeat T, et al. Citadel:Side-channel-resistant enclaves with secure shared memory on a speculative out-of-order processor[EB/OL].[2023-12-11]. https://arxiv.org/pdf/2306.14882.pdf.
[22] Shang K T, Lu F, Huang K, et al. Cluster nodes integrity attestation and monitoring scheme for confidential computing platform[C]//2023 IEEE International Conference on Trust, Security and Privacy in Computing and Communications(TrustCom). Exeter, UK, 2023.
[23] Parma:Confidential containers via attested execution policies[EB/OL].[2023-12-11]. https://arxiv.org/pdf/2302.03976.pdf.
[24] Confidential computing and privacy-preserving technologies for 6G[EB/OL].[2023-12-11]. https://confidential6g.eu.
[25] 数字中国建设整体布局规划[EB/OL].[2023-12-01].https://www.gov.cn/govweb/zhengce/2023-02/27/content_5743484.htm.
[26] 冯登国.打造富有弹性的网络空间安全保障体系任重道远[EB/OL].[2023-11-12]. http://www.secrss.com/articles/60651.
[27] 邬江兴,季新生,贺磊,等.内生安全赋能网络弹性研究[J].信息通信技术, 2023, 17(4):4-11.
[28] 金梁,楼洋明,孙小丽,等. 6G无线内生安全理念与构想[J].中国科学:信息科学, 2023, 53(2):344-364.
[29] 马博林,张铮,邵昱文,等. KMBox:基于Linux内核改造的进程异构冗余执行系统[J].信息安全学报, 2023,8(1):14-25.
[30] 金希文,葛强,张进,等.拟态路由器TCP代理设计实现与形式化验证研究[J].信息安全学报, 2023, 8(5):1-13.
[31] 张进,葛强,徐伟海,等.拟态路由器BGP代理的设计实现与形式化验证[J].通信学报, 2023, 44(3):33-44.
[32] Miao K C, McEwen M, Atalaya J, et al. Overcoming leakage in quantum error correction[J]. Nature Physics,2023, 19:1780-1786.
[33] Google Quantum AI and Collaborators. Measurement-induced entanglement and teleportation on a noisy quantum processor[J]. Nature, 2023, 622:481-486.
[34] Google Quantum AI and Collaborators. Phase transition in random circuit sampling[EB/OL].[2023-12-22]. https://arxiv.org/pdf/2304.11119.pdf.
[35] Litinski D. How to compute a 256-bit elliptic curve private key with only 50 million Toffoli gates[EB/OL].[2023-06-14]. https://arxiv.org/pdf/2306.08585.pdf.
[36] Deng Y H, Gu Y C, Liu H L, et al. Gaussian boson sampling with pseudo-photon-number resolving detectors and quantum computational advantage[J]. Physical Review Letters, 2023, 131(15):150601.
[37] GouzienÉ, Sangouard N. Factoring 2048-bit RSA integers in 177 days with 13436 qubits and a multimode memory[J]. Physical Review Letters, 2021, 127(14):140503.
[38] GouzienÉ, Ruiz D, Le Régent F M, et al. Performance analysis of a repetition cat code architecture:Computing256-bit elliptic curve logarithm in 9 hours with 126133cat qubits[J]. Physical Review Letters, 2023, 131(4):040602.
[39] Zhu H T, Huang Y, Liu H, et al. Experimental modepairing measurement-device-independent quantum key distribution without global phase locking[J]. Physical Review Letters, 2023, 130(3):030801.
[40] Ye P, Chen W, Zhang G W, et al. Induced-photorefraction attack against quantum key distribution[J]. Physical Review Applied, 2023, 19(5):054052.
[41] Quantum 2030:The DND/CAF quantum science&technology strategy implementation plan[EB/OL].[2023-12-01]. https://www.canada.ca/content/dam/dnd-mdn/documents/reports/2023/dnd-caf-quantum-ststrategy-implementation-plan.pdf.
[42] NIST to standardize encryption algorithms that can resist attack by quantum computers[EB/OL].[2023-08-24].https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers#:-:text=Today%20NIST%20released%20draft%20standards,until%20Nov.%2022%2C%202023.
[43] QuSecure pioneers first-ever U.S. live end-to-end satellite quantum-resilient cryptographic communications link through space[EB/OL].[2023-03-09]. https://www.qusecure.com/qusecure-pioneers-first-ever-u-s-live-end-to-end-satellite-quantum-resilient-cryptographic-communications-link-through-space/.
[44] Kim Y, Eddins A, Anand S, et al. Evidence for the utility of quantum computing before fault tolerance[J]. Nature, 2023, 618(7965):500-505.
[45] Liang Q F. Employing quantum key distribution for enhancing network security[C]//Proceedings of the 2023 International Conference on Image, Algorithms and Artificial Intelligence(ICIAAI 2023). Setubal:Scites Press,2023.
[46] Zhang Y, Li Y, Cui L, et al. Siren's Song in the AI Ocean:A survey on hallucination in large language models[EB/OL].[2023-09-24]. https://arxiv.org/pdf/2309.01-219.pdf.
[47] Deng G, Liu Y, Li Y, et al. Jailbreaker:Automated jailbreak across multiple large language model chatbots[EB/OL].[2023-10-25]. https://arxiv.org/pdf/2307.08715.pdf.
[48] Qu Y, Shen X, He X, et al. Unsafe diffusion:On the generation of unsafe images and hateful memes from textto-image models[C]//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security. Seattle:ACM, 2023.
[49] Carlini N, Ippolito D, Jagielski M, et al. Quantifying memorization across neural language models[C]//The Eleventh International Conference on Learning Representations. Rwanda:ICLR, 2023.
[50] Carlini N, Hayes J, Nasr M, et al. Extracting training data from diffusion models[C]//32nd USENIX Security Symposium(USENIX Security 23). Anaheim:USENIX, 2023:5253-5270.
[51] Mitchell E, Lee Y, Khazatsky A, et al. Detectgpt:Zeroshot machine-generated text detection using probability curvature[C]//International Conference on Machine LearSeattlening. arXiV:2301.11305.
[52] Sha Z, Li Z, Yu N, et al. De-fake:Detection and attribution of fake images generated by text-to-image generation models[C]//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security.New York:ACM, 2023:3418-3432.
[53] Meng K, Sharma A S, Andonian A J, et al. Mass-Editing memory in a transformer[C]//The 11th International Conference on Learning Representations. Rwanda:ICLR,2023.
[54] Gandikota R, Materzynska J, Fiotto-Kaufman J, et al.Erasing concepts from diffusion models[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Vancouver:IEEE, 2023.
[55] Pearce H, Ahmad B, Tan B, et al. Asleep at the keyboard? Assessing the security of github copilot's code contributions[C]//2022 IEEE Symposium on Security and Privacy. OakLand:IEEE, 2022:754-768.
[56] Sandoval G, Pearce H, Nys T, et al. Lost at C:A user study on the security implications of large language model code assistants[C]//32nd USENIX Security Symposium(USENIX Security 23). Anaheim:USENIX, 2023:2205-2222.
[57] Deng Y, Xia C S, Peng H, et al. Large language models are zero-shot fuzzers:Fuzzing deep-learning libraries via large language models[C]//Proceedings of the 32nd ACM SIGSOFT international symposium on software testing and analysis. New York:ACM, 2023:423-435.
[58] Pearce H, Tan B, Ahmad B, et al. Examining zero-shot vulnerability repair with large language models[C]//2023IEEE Symposium on Security and Privacy. OakLand:IEEE, 2023:2339-2356.
[59] 互联网信息服务算法推荐管理规定[EB/OL].[2022-03-01]. http://www.cac.gov.cn/2022-01/04/c_164289460636-4259.htm.
[60] 互联网信息服务深度合成管理规定[EB/OL].[2022-11-25]. http://www.cac.gov.cn/2022-12/11/c_16722219493-18230.htm?utm_campaign=84.
[61] 生成式人工智能服务管理暂行办法[EB/OL].[2023-07-13]. https://www.gov.cn/zhengce/zhengceku/202307/content_6891752.htm.
文章导航

/