专题:2023年科技热点回眸

2023年无人机热点回眸

  • 段海滨 ,
  • 梅宇 ,
  • 赵彦杰 ,
  • 霍梦真 ,
  • 牛轶峰 ,
  • 王寅 ,
  • 袁莞迈 ,
  • 邓亦敏 ,
  • 范彦铭 ,
  • 朱纪洪 ,
  • 李轩 ,
  • 罗德林
展开
  • 1. 北京航空航天大学自动化科学与电气工程学院, 北京 100083;
    2. 中国电子科技集团公司信息科学研究院, 北京 100086;
    3. 国防科技大学智能科学学院, 长沙 410073;
    4. 南京航空航天大学航天学院, 南京 210016;
    5. 中国航空工业集团公司沈阳飞机设计研究所, 沈阳 110035;
    6. 清华大学精密仪器系, 北京 100084;
    7. 鹏城实验室数学与理论部, 深圳 518000;
    8. 厦门大学航空航天学院, 厦门 361102
段海滨,教授,研究方向为无人机仿生自主控制、计算机仿生视觉和仿生智能计算,电子信箱:hbduan@buaa.edu.cn

收稿日期: 2023-12-15

  修回日期: 2024-01-05

  网络出版日期: 2024-04-09

基金资助

国家自然科学基金项目(T2121003,U20B2071,91948204)

Review of technological hotspots of unmanned aerial vehicle in 2023

  • DUAN Haibin ,
  • MEI Yu ,
  • ZHAO Yanjie ,
  • HUO Mengzhen ,
  • NIU Yifeng ,
  • WANG Yin ,
  • YUAN Wanmai ,
  • DENG Yimin ,
  • FAN Yanming ,
  • ZHU Jihong ,
  • LI Xuan ,
  • LUO Delin
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
    2. Information Science Academy of China Electronics Technology Group Corporation, Beijing 100086, China;
    3. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
    4. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    5. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110035, China;
    6. Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
    7. Department of Mathematics and Theory, Pengcheng Laboratory, Shenzhen 518000, China;
    8. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China

Received date: 2023-12-15

  Revised date: 2024-01-05

  Online published: 2024-04-09

摘要

2023年,无人机技术方面实现了革新和突破,展现出了引人瞩目的技术创新进展和广泛的应用态势。从无人机管控政策、无人机技术革新、无人机关键技术、无人机集群验证、反无人机技术等多个角度全方位分析了2023年无人机的科技热点。随着视觉应急避障技术、智能自主飞行能力的提升,无人机性能和功能均得到了显著提升。随着无人机的不断普及和应用,无人机集群的关键技术、作战样式和平台建设也不断完善,行业定制化、自主智能化、跨域实战化依然是无人机未来发展的重要方向。

本文引用格式

段海滨 , 梅宇 , 赵彦杰 , 霍梦真 , 牛轶峰 , 王寅 , 袁莞迈 , 邓亦敏 , 范彦铭 , 朱纪洪 , 李轩 , 罗德林 . 2023年无人机热点回眸[J]. 科技导报, 2024 , 42(1) : 217 -231 . DOI: 10.3981/j.issn.1000-7857.2024.01.014

Abstract

In 2023 innovations and breakthroughs were achieved in UAV technology, showing remarkable technological innovation progress and wide application situation. This paper comprehensively analyzes the scientific and technological hotspots of UAV in 2023 from multiple perspectives, such as UAV control policy, technology innovation, key technologies, UAV cluster verification, and anti-UAV technology. With the improvement of visual emergency obstacle avoidance technology and intelligent autonomous flight ability, the performance and function of UAV were significantly improved. With the continuous popularization and application of Uavs, the key technologies, combat styles and platform construction of UAV swarms were also constantly improving. Industry customization, independent intelligence and cross-domain actual combat are still important directions for the future development of UAVs.

参考文献

[1] 段海滨,申燕凯,王寅,等. 2018年无人机领域热点评述[J].科技导报, 2019, 37(3):82-90.
[2] 段海滨,申燕凯,赵彦杰,等. 2019年无人机热点回眸[J].科技导报, 2020, 38(1):170-187.
[3] 段海滨,申燕凯,赵彦杰,等. 2020年无人机热点回眸[J].科技导报, 2021, 39(1):233-247.
[4] 段海滨,何杭轩,赵彦杰,等. 2021年无人机热点回眸[J].科技导报, 2022, 40(1):215-227.
[5] 段海滨,何杭轩,赵彦杰,等. 2022年无人机热点回眸[J].科技导报, 2023, 41(1):215-229.
[6] 美航母进入波斯湾,伊朗紧盯[N].环球时报, 2023-11-30(8).
[7] 梁晓龙,杨爱武,张佳强,等.无人集群博弈对抗系统仿真验证及决策关键技术综述[J/OL].系统仿真学报,[2023-12-02]. https://doi.org/10.16182/j.issn1004731x.joss.23-0072.
[8] 五方面着力促进低空经济发展[EB/OL].(2023-01-31)[2023-12-01]. http://www.jjckb.cn/2023-01/31/c_131069-3816.htm.
[9] 加快无人机监管改革驱动低空经济发展[EB/OL].(2023-03-06)[2023-12-01]. http://www.caacnews.com.cn/2023zhuanti/2023lh/2023lhzd/202303/t20230306_136438-9.html.
[10] 我国主导制定的两项无人机领域国际标准正式发布[EB/OL].(2023-05-15)[2023-12-01]. https://wap.miit.gov.cn/jgsj/zbes/gzdt/art/2023/art_dda359fd502e4f5e91aba6139ae78b9b.html.
[11] 无人驾驶航空器飞行管理暂行条例[EB/OL].(2023-05-31)[2023-12-01]. https://wap.miit.gov.cn/jgsj/zfs/xzfg/art/2023/art_ece2749074fd4c53a915b964d2264fd8.html.
[12] GB 42590—2023《民用无人驾驶航空器系统安全要求》[EB/OL].(2023-06-02)[2023-12-02]. https://www.samr.gov.cn/xw/tp/art/2023/art_c10d94e98310480d84567dc3ad5a1a11.html.
[13] NASA. Five ways NASA supercomputing takes missions from concept to reality[EB/OL].(2023-11-13)[2023-12-01]. https://www.nasa.gov/general/five-ways-nasa-supercomputing-takes-missions-from-concept-to-reality.
[14] 我国主导制定的三项无人机领域国际标准正式发布[EB/OL].(2023-10-26)[2023-12-01]. https://wap.miit.gov.cn/xwdt/gxdt/sjdt/art/2023/art_16d9b1ccd06d4ba1a6f-66e6dbab858bb.html.
[15] 《民用无人驾驶航空器系统物流运行通用要求第1部分:海岛场景》的通知[EB/OL].(2023-10-30)[2023-12-01]. http://www.caac. gov. cn/XXGK/XXGK/BZGF/HYBZ/202310/t20231031_221872.html.
[16] 国家国防科工局,中央军委装备发展部.关于对无人机相关物项实施出口管制[EB/OL].(2023-11-15)[2024-01-08]. http://qa.mofcom.gov.cn/article/ddfg/tzzhch/202311/20231103453639.shtml.
[17] 国家标准化管理委员会关于提前实施《民用无人驾驶航空器系统安全要求》国家标准主要条款的通知[EB/OL].(2023-11-30)[2023-12-01]. https://www.sac.gov.cn/xw/tzgg/art/2023/_e7a662baaac64301a4b78507d5bf4-c71.html.
[18] 工业和信息化部《民用无人驾驶航空器无线电管理暂行办法》[EB/OL].(2023-12-29)[2024-01-05]. https://www.miit.gov.cn/jgsj/wgj/bmgz/art/2023/art_6b8e0b9d39-a449fabd34fd492de6e1eb.html.
[19] 给输电线路“体检”,无人机“小航母”来了[EB/OL].(2023-11-14)[2023-12-05]. https://baijiahao.baidu.com/s?id=1782507192806466403&wfr=spider&for=pc.
[20] 全球首创!中国科学院长春光机所自主研发制造的新型无人机[EB/OL].(2023-11-22)[2023-12-05]. https://baijiahao. baidu. com/s? id=1783226966548780022&wfr=spider&for=pc.
[21] 土耳其舰载无人机完成首飞[EB/OL].(2023-11-28)[2023-12-05]. https://m.gmw.cn/2023-11/28/content_13-03584609.htm.
[22] Li X, Diao W, Mao Y, et al. OGMN:Occlusion-guided multi-task network for object detection in uav images[J].ISPRS Journal of Photogrammetry and Remote Sensing,2023, 199:242-257.
[23] Liu Z H, Shang Y Y, Li T M, et al. Robust multi-drone multi-target tracking to resolve target occlusion:A benchmark[J]. IEEE Transactions on Multimedia, 2023,25:1462-1475.
[24] Müller H, Niculescu V, Polonelli T, et al. Robust and efficient depth-based obstacle avoidance for autonomous miniaturized UAVs[J]. IEEE Transactions on Robotics,2023, 39(6):4935-4951.
[25] Marcucci T, Petersen M, Von Wrangel D, et al. Motion planning around obstacles with convex optimization[J].Science Robotics, 2023, 8(84):eadf7843.
[26] Stache F, Westheider J, Magistri F, et al. Adaptive path planning for UAVs for multi-resolution semantic segmentation[J]. Robotics and Autonomous Systems, 2023,159:104288.
[27] Wu L Y, Xi Z Y, Zheng Z, et al. Application of metamorphic testing on UAV path planning software[J]. Journal of Systems and Software, 2023, 21:111769.
[28] Kaufmann E, Bauersfeld L, Loquercio A, et al. Champion-level drone racing using deep reinforcement learning[J]. Nature, 2023, 620(7976):982-987.
[29] Song Y, Romero A, Müller M, et al. Reaching the limit in autonomous racing:Optimal control versus reinforcement learning[J]. Science Robotics, 2023, 8(82):eadg14-62.
[30] Chahine M, Hasani R, Kao P, et al. Robust flight navigation out of distribution with liquid neural networks[J].Science Robotics, 2023, 8(77):eadc8892.
[31] Sanket N J, Singh C D, Fermüller C, et al. Ajna:Generalized deep uncertainty for minimal perception on parsimonious robots[J]. Science Robotics, 2023, 8(81):eadd5-139.
[32] 段海滨,霍梦真.鸽群优化[M].北京:科学出版社,2023.
[33] Aucone E, Kirchgeorg S, Valentini A, et al. Drone-assisted collection of environmental DNA from tree branches for biodiversity monitoring[J]. Science Robotics,2023, 8(74):eadd5762.
[34] Meng K T, Wu Q Q, Xu J, et al. UAV-enabled integrated sensing and communication:Opportunities and challenges[J]. IEEE Wireless Communications, 2023, doi:10.1109/MWC.131.2200442.
[35] Zhao J W, Gao F F, Jia W M, et al. Integrated sensing and communications for UAV communications with jittering effect[J]. IEEE Wireless Communications Letters,2023, 12(4):758-762.
[36] 赵拓,邓汉强,高佳隆,等.基于网络节点聚类的多无人机动态目标分配[J].系统仿真学报, 2023, 35(4):695-708.
[37] Wang Y D, Liu W Z, Liu J, et al. Cooperative USVUAV marine search and rescue with visual navigation and reinforcement learning-based control[J]. ISA Transactions, 2023, 137:222-235.
[38] 徐小斌,段海滨,曾志刚.仿猛禽视觉多分辨率的海上无人艇协同跟踪[J].智能系统学报, 2023, 4:867-877.
[39] Gao C X, Wang X Y, Wang R Y, et al. A UAV-based explore-then-exploit system for autonomous indoor facility inspection and scene reconstruction[J]. Automation in Construction, 2023, 148:104753.
[40] Xu Z F. A real-time dynamic obstacle tracking and mapping system for UAV navigation and collision avoidance with an RGB-D camera[C]//IEEE International Conference on Robotics and Automation(ICRA). London, United Kingdom:IEEE, 2023:10645-10651.
[41] Gallo E, Barrientos A. GNSS-denied semi-direct visual navigation for autonomous UAVs aided by PI-inspired inertial priors[J]. Aerospace, 2023, 10(3):220.
[42] Lin H Y, Zhan J R. GNSS-denied UAV indoor navigation with UWB incorporated visual inertial odometry[J].Measurement, 2023, 206:112256.
[43] Çoban S. Stochastic redesign of mini UAV wing for maximizing autonomous flight performance[J]. Aircraft Engineering and Aerospace Technology, 2023, 2:2667.
[44] Zhao Y H, Yan L, Dai J C, et al. Robust planning system for fast autonomous flight in complex unknown environment using sparse directed frontier points[J]. Drones,2023, 7(3):219.
[45] Choi J, Kim H M, Hwang H J, et al. Modular reinforcement learning for autonomous UAV flight control[J].Drones, 2023, 7(7):418.
[46] Zhu X D, Lai J Z, Zhou B C, et al. A cooperative localization method for leader-follower multiple UAVs using continuous relative ranging information[J]. Guidance,Navigation and Control, 2023, 3(2):2350010.
[47] Yang G B, Wang T, Yang M, et al. Adaptive tracking control for unknown dynamics systems with SINDYcbased sparse identification[J]. Guidance, Navigation and Control, 2023, 3(2):2350009.
[48] Liu G Q, Li B, Duan G R. An optimal FASA approach for UAV trajectory tracking control[J]. Guidance, Navigation and Control, 2023, 3(2):2350015.
[49] Zhang C H, Huang G J, Liu L, et al. Webuav-3M:A benchmark for unveiling the power of million-scale deep UAV tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7):9186-9205.
[50] Zou F, Li J, Niu Y F. Time-coordinated path following for multiple agile fixed-wing UAVs with end-roll expectations[J]. Guidance, Navigation and Control, 2023, doi:10.1142/S2737480723500206.
[51] Gao X H, Wang L, Yu X Y, et al. Conditional probability based multi-objective cooperative task assignment for heterogeneous UAVs[J]. Engineering Applications of Artificial Intelligence, 2023, 123:106404.
[52] Wang K H, Zhang X, Qiao X Y, et al. Adjustable fully adaptive cross-entropy algorithms for task assignment of multi-UAVs[J]. Drones, 2023, 7(3):204.
[53] Jiang H H, Wang G Y, Liu Q, et al. Hierarchical multiUAVs task assignment based on dominance rough sets[J]. Applied Soft Computing, 2023, 143:110445.
[54] Yuan D P. UAVS task assignment based on hybrid swarm intelligence algorithm[C]//2023 8th International Conference on Image, Vision and Computing(ICIVC).Dalian, China:IEEE, 2023:783-788.
[55] Wang W F, Ru L, Lv M L, et al. Multi-time-stage collaborative task assignment for heterogeneous UAVs using CBBA[C]//2023 9th International Conference on Control, Automation and Robotics(ICCAR). Beijing, China:IEEE, 2023:193-198.
[56] Jia Z S, Xiao B, Qian H Y. Improved mixed discrete particle swarms based multi-task assignment for UAVs[C]//2023 IEEE 12th Data Driven Control and Learning Systems Conference(DDCLS). Xiangtan, China:IEEE,2023:442-448.
[57] Xu L, Cao X B, Du W B, et al. Cooperative path planning optimization for multiple UAVs with communication constraints[J]. Knowledge-based Systems, 2023,260:110164.
[58] Zhang D Y, Li X W, Ren G Q, et al. Three-dimensional path planning of UAVs in a complex dynamic environment based on environment exploration twin delayed deep deterministic policy gradient[J]. Symmetry, 2023,15(7):1371.
[59] Luo X L, Zhang T Y, Xu W X, et al. Multi-tier 3D trajectory planning for cellular-connected UAVs in complex urban environments[J]. Symmetry, 2023, 15(9):1628.
[60] Samir M, Sharafeddine S, Assi C M, et al. UAV trajectory planning for data collection from time-constrained iot devices[J]. IEEE Transactions on Wireless Communications, 2019, 19(1):34-46.
[61] 段海滨,邱华鑫.基于群体智能的无人机集群自主控制[M].北京:科学出版社, 2018.
[62] 胡树欣,张安,孙嫚憶,等.基于一致性理论和S-MPC的四旋翼编队协同避障[J].系统工程与电子技术,2023, doi:11.2422.TN.20230905.2126.004.
[63] Dixit A, Agrawal P, Misra A, et al. Adaptive sliding mode controller based consensus protocol for swarm of UAVs[J]. Aircraft Engineering and Aerospace Technology, 2023, 95(4):619-628.
[64] Yan D H, Zhang W G, Chen H, et al. Robust control strategy for multi-UAVs system using MPC combined with Kalman-consensus filter and disturbance observer[J]. ISA Transactions, 2023, 135:35-51.
[65] Yan C, Wang C, Xiang X J, et al. Collision-avoiding flocking with multiple fixed-wing UAVs in obstaclecluttered environments:A task-specific curriculumbased MADRL approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, doi:10.1109/TNNLS.2023.3245124.
[66] Song Y, Lim S, Myung H, et al. Distributed swarm system with hybrid-flocking control for small fixed-wing UAVs:Algorithms and flight experiments[J]. Expert Systems with Applications, 2023, 229:120457.
[67] 段海滨,孙永斌.无人机空中加油自主控制[M].北京:科学出版社, 2023.
[68] Hou Y Q, Liang X L, Zhang J Q, et al. Hierarchical decision-making framework for multiple UCAVs autonomous confrontation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11):13953-13968.
[69] Gong Z H, Xu Y, Luo D L. UAV cooperative air combat maneuvering confrontation based on multi-agent reinforcement learning[J]. Unmanned Systems, 2023, 11(3):273-286.
[70] Li S Y, Wu Q X, Du B, et al. Autonomous maneuver decision-making of UCAV with incomplete information in human-computer gaming[J]. Drones, 2023, 7(3):157.
[71] Xia W, Zhou Z Y, Jiang W Y, et al. Dynamic UAV swarm confrontation:An imitation based on mobile adaptive networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5):7183-7202.
[72] Wu P C, Wang H Q, Liang G W, et al. Research on unmanned aerial vehicle cluster collaborative countermeasures based on dynamic non-zero-sum game under asymmetric and uncertain information[J]. Aerospace,2023, 10(8):711.
[73] Ren Z, Zhang D, Tang S, et al. Cooperative maneuver decision making for multi-UAV air combat based on incomplete information dynamic game[J]. Defence Technology, 2023, 27:308-317.
[74] Abdallaoui S, Ikaouassen H, Kribèche A, et al. Autonomous vehicle control systems-state of the art of decision-making and maneuver execution[J]. Authorea,2023:1-12.
[75] 美国海军加快兵力调整步伐,图谋打造无人舰队维持海上霸权[EB/OL].(2023-09-28)[2023-12-02]. https://baijiahao. baidu. com/s? id=1778237524515707882&wfr=spider&for=pc.
[76] 美海军太平洋舰队5月1日启动其第二次“无人系统一体化战斗问题”演习[EB/OL].(2023-05-08)[2023-12-02]. https://weibo.com/ttarticle/p/show?id=23094048990-43594863075.
[77] 美海军举办“数字魔爪”演习以提高无人系统的杀伤力[EB/OL].(2023-11-07)[2023-12-02]. https://mp.weixin.qq.com/s?__biz=MzUxMTAyNzc0NQ==&mid=22475189-77&idx=1&sn=1ad19e7376f01e3acd4d4f43b681a7a&chksm=f97b344fce0cbd59981ad8d8d8cf7b56f22ba423af24-cc36adedcfacf33433bdcc2bf9bb0c4d&scene=27.
[78] Qamar R A, Sarfraz M, Rahman A, et al. Multi-criterion multi-UAV task allocation under dynamic conditions[J].Journal of King Saud University-Computer and Information Sciences, 2023, 35(9):101734.
[79] 王峰,黄子路,孟臣,等.基于KnCMPSO算法的异构无人机协同多任务分配[J].自动化学报, 2023, 49(2):399-414.
[80] 滕康,周勇.基于当前统计模型改进的机动目标自适应跟踪算法[J].现代雷达, 2023, 1:1-9.
[81] 王传云,苏阳,王琳霖,等.面向反制无人机集群的多目标连续鲁棒跟踪算法[J].航空学报, 2023, 1:1-15.
[82] Wang B H, Chen W S, Zhang B, et al. A nonlinear observer-based approach to robust cooperative tracking for heterogeneous spacecraft attitude control and formation applications[J]. IEEE Transactions on Automatic Control, 2023, 68(1):400-407.
[83] Cheng W L, Zhang K, Jiang B. Fixed-time fault-tolerant formation control for a cooperative heterogeneous multiagent system with prescribed performance[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems,2023, 53(1):462-474.
[84] Wang Y H, Yu G, Xie W, et al. Robust saturated formation tracking control of multiple quadrotors with switching communication topologies[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6):3744-3753.
[85] 空军第三届“无人争锋”挑战赛落幕[EB/OL].(2023-08-11)[2023-12-02]. https://tv.cctv.cn/2023/08/11/VIDEmg-8boIb511ycQdXnpJLW230811.shtml.
[86] 张珣,张静,胡中雨.国外无人机反制技术发展探析[J].数字通信世界, 2023(4):4-6.
[87] 英国牵头的五国将为乌克兰提供价值1.15亿美元的防空装备[EB/OL].(2023-08-18)[2023-12-02]. https://baijiahao.baidu.com/sid=1774557468477040954&wfr=spider&for=pc.
[88] “军队-2023”国际军事技术论坛新式反无人机装备[EB/OL].(2023-09-01)[2023-12-02]. https://mil. sohu.com/a/716814629_121245527.
[89] 乌克兰接收新装备,反无人机系统、“月神”NG无人机[EB/OL].(2023-09-11)[2023-12-02]. https://weibo.com/ttarticle/p/show?id=2309404944831502745834.
[90] 雷神技术验证低慢小无人机防御系统,美陆军正在重建近程防空力量[EB/OL].(2023-10-25)[2023-12-02].https://mil.ifeng.com/c/8UlaRC6qI9R.
[91] 美国陆军战士集装箱军用反无人机系统[EB/OL].(2023-11-23)[2023-12-03]. https://mp.weixin.qq.com/s?__biz=MzI4OTkyNDgxNA==&mid=2247867493&idx=2-&sn=e0894b443b6795ba848ca8.
[92] Dong Y X, Ma Y J, Li Y, et al. High-precision realtime UAV target recognition based on improved YOLOv4[J]. Computer Communications, 2023, 206:124-132.
[93] Huang B, Li J N, Chen J J, et al. Anti-UAV410:A thermal infrared benchmark and customized scheme for tracking drones in the wild[J]. IEEE Transactions on Pattern Analysis&Machine Intelligence, 2023(1):1-14.
[94] Choi H H, Oh J, Kang K M, et al. Idle-less slotted ALOHA protocol for drone swarm identification[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8):11080-11085.
[95] Souli N, Kolios P, Ellinas G. Multi-agent system for rogue drone interception[J]. IEEE Robotics and Automation Letters, 2023, 8(4):2221-2228.
[96] Feng Z K, Huang M X, Wu Y Y, et al. Approximating nash equilibrium for anti-UAV jamming Markov game using a novel event-triggered multi-agent reinforcement learning[J]. Neural Networks, 2023, 161:330-342.
[97] 钟春来,杨洋,曹立佳,等.基于视觉的无人机自主着陆研究综述[J].航空兵器, 2023, 30(5):104-114.
文章导航

/