[1] 段海滨,申燕凯,王寅,等. 2018年无人机领域热点评述[J].科技导报, 2019, 37(3):82-90.
[2] 段海滨,申燕凯,赵彦杰,等. 2019年无人机热点回眸[J].科技导报, 2020, 38(1):170-187.
[3] 段海滨,申燕凯,赵彦杰,等. 2020年无人机热点回眸[J].科技导报, 2021, 39(1):233-247.
[4] 段海滨,何杭轩,赵彦杰,等. 2021年无人机热点回眸[J].科技导报, 2022, 40(1):215-227.
[5] 段海滨,何杭轩,赵彦杰,等. 2022年无人机热点回眸[J].科技导报, 2023, 41(1):215-229.
[6] 美航母进入波斯湾,伊朗紧盯[N].环球时报, 2023-11-30(8).
[7] 梁晓龙,杨爱武,张佳强,等.无人集群博弈对抗系统仿真验证及决策关键技术综述[J/OL].系统仿真学报,[2023-12-02]. https://doi.org/10.16182/j.issn1004731x.joss.23-0072.
[8] 五方面着力促进低空经济发展[EB/OL].(2023-01-31)[2023-12-01]. http://www.jjckb.cn/2023-01/31/c_131069-3816.htm.
[9] 加快无人机监管改革驱动低空经济发展[EB/OL].(2023-03-06)[2023-12-01]. http://www.caacnews.com.cn/2023zhuanti/2023lh/2023lhzd/202303/t20230306_136438-9.html.
[10] 我国主导制定的两项无人机领域国际标准正式发布[EB/OL].(2023-05-15)[2023-12-01]. https://wap.miit.gov.cn/jgsj/zbes/gzdt/art/2023/art_dda359fd502e4f5e91aba6139ae78b9b.html.
[11] 无人驾驶航空器飞行管理暂行条例[EB/OL].(2023-05-31)[2023-12-01]. https://wap.miit.gov.cn/jgsj/zfs/xzfg/art/2023/art_ece2749074fd4c53a915b964d2264fd8.html.
[12] GB 42590—2023《民用无人驾驶航空器系统安全要求》[EB/OL].(2023-06-02)[2023-12-02]. https://www.samr.gov.cn/xw/tp/art/2023/art_c10d94e98310480d84567dc3ad5a1a11.html.
[13] NASA. Five ways NASA supercomputing takes missions from concept to reality[EB/OL].(2023-11-13)[2023-12-01]. https://www.nasa.gov/general/five-ways-nasa-supercomputing-takes-missions-from-concept-to-reality.
[14] 我国主导制定的三项无人机领域国际标准正式发布[EB/OL].(2023-10-26)[2023-12-01]. https://wap.miit.gov.cn/xwdt/gxdt/sjdt/art/2023/art_16d9b1ccd06d4ba1a6f-66e6dbab858bb.html.
[15] 《民用无人驾驶航空器系统物流运行通用要求第1部分:海岛场景》的通知[EB/OL].(2023-10-30)[2023-12-01]. http://www.caac. gov. cn/XXGK/XXGK/BZGF/HYBZ/202310/t20231031_221872.html.
[16] 国家国防科工局,中央军委装备发展部.关于对无人机相关物项实施出口管制[EB/OL].(2023-11-15)[2024-01-08]. http://qa.mofcom.gov.cn/article/ddfg/tzzhch/202311/20231103453639.shtml.
[17] 国家标准化管理委员会关于提前实施《民用无人驾驶航空器系统安全要求》国家标准主要条款的通知[EB/OL].(2023-11-30)[2023-12-01]. https://www.sac.gov.cn/xw/tzgg/art/2023/_e7a662baaac64301a4b78507d5bf4-c71.html.
[18] 工业和信息化部《民用无人驾驶航空器无线电管理暂行办法》[EB/OL].(2023-12-29)[2024-01-05]. https://www.miit.gov.cn/jgsj/wgj/bmgz/art/2023/art_6b8e0b9d39-a449fabd34fd492de6e1eb.html.
[19] 给输电线路“体检”,无人机“小航母”来了[EB/OL].(2023-11-14)[2023-12-05]. https://baijiahao.baidu.com/s?id=1782507192806466403&wfr=spider&for=pc.
[20] 全球首创!中国科学院长春光机所自主研发制造的新型无人机[EB/OL].(2023-11-22)[2023-12-05]. https://baijiahao. baidu. com/s? id=1783226966548780022&wfr=spider&for=pc.
[21] 土耳其舰载无人机完成首飞[EB/OL].(2023-11-28)[2023-12-05]. https://m.gmw.cn/2023-11/28/content_13-03584609.htm.
[22] Li X, Diao W, Mao Y, et al. OGMN:Occlusion-guided multi-task network for object detection in uav images[J].ISPRS Journal of Photogrammetry and Remote Sensing,2023, 199:242-257.
[23] Liu Z H, Shang Y Y, Li T M, et al. Robust multi-drone multi-target tracking to resolve target occlusion:A benchmark[J]. IEEE Transactions on Multimedia, 2023,25:1462-1475.
[24] Müller H, Niculescu V, Polonelli T, et al. Robust and efficient depth-based obstacle avoidance for autonomous miniaturized UAVs[J]. IEEE Transactions on Robotics,2023, 39(6):4935-4951.
[25] Marcucci T, Petersen M, Von Wrangel D, et al. Motion planning around obstacles with convex optimization[J].Science Robotics, 2023, 8(84):eadf7843.
[26] Stache F, Westheider J, Magistri F, et al. Adaptive path planning for UAVs for multi-resolution semantic segmentation[J]. Robotics and Autonomous Systems, 2023,159:104288.
[27] Wu L Y, Xi Z Y, Zheng Z, et al. Application of metamorphic testing on UAV path planning software[J]. Journal of Systems and Software, 2023, 21:111769.
[28] Kaufmann E, Bauersfeld L, Loquercio A, et al. Champion-level drone racing using deep reinforcement learning[J]. Nature, 2023, 620(7976):982-987.
[29] Song Y, Romero A, Müller M, et al. Reaching the limit in autonomous racing:Optimal control versus reinforcement learning[J]. Science Robotics, 2023, 8(82):eadg14-62.
[30] Chahine M, Hasani R, Kao P, et al. Robust flight navigation out of distribution with liquid neural networks[J].Science Robotics, 2023, 8(77):eadc8892.
[31] Sanket N J, Singh C D, Fermüller C, et al. Ajna:Generalized deep uncertainty for minimal perception on parsimonious robots[J]. Science Robotics, 2023, 8(81):eadd5-139.
[32] 段海滨,霍梦真.鸽群优化[M].北京:科学出版社,2023.
[33] Aucone E, Kirchgeorg S, Valentini A, et al. Drone-assisted collection of environmental DNA from tree branches for biodiversity monitoring[J]. Science Robotics,2023, 8(74):eadd5762.
[34] Meng K T, Wu Q Q, Xu J, et al. UAV-enabled integrated sensing and communication:Opportunities and challenges[J]. IEEE Wireless Communications, 2023, doi:10.1109/MWC.131.2200442.
[35] Zhao J W, Gao F F, Jia W M, et al. Integrated sensing and communications for UAV communications with jittering effect[J]. IEEE Wireless Communications Letters,2023, 12(4):758-762.
[36] 赵拓,邓汉强,高佳隆,等.基于网络节点聚类的多无人机动态目标分配[J].系统仿真学报, 2023, 35(4):695-708.
[37] Wang Y D, Liu W Z, Liu J, et al. Cooperative USVUAV marine search and rescue with visual navigation and reinforcement learning-based control[J]. ISA Transactions, 2023, 137:222-235.
[38] 徐小斌,段海滨,曾志刚.仿猛禽视觉多分辨率的海上无人艇协同跟踪[J].智能系统学报, 2023, 4:867-877.
[39] Gao C X, Wang X Y, Wang R Y, et al. A UAV-based explore-then-exploit system for autonomous indoor facility inspection and scene reconstruction[J]. Automation in Construction, 2023, 148:104753.
[40] Xu Z F. A real-time dynamic obstacle tracking and mapping system for UAV navigation and collision avoidance with an RGB-D camera[C]//IEEE International Conference on Robotics and Automation(ICRA). London, United Kingdom:IEEE, 2023:10645-10651.
[41] Gallo E, Barrientos A. GNSS-denied semi-direct visual navigation for autonomous UAVs aided by PI-inspired inertial priors[J]. Aerospace, 2023, 10(3):220.
[42] Lin H Y, Zhan J R. GNSS-denied UAV indoor navigation with UWB incorporated visual inertial odometry[J].Measurement, 2023, 206:112256.
[43] Çoban S. Stochastic redesign of mini UAV wing for maximizing autonomous flight performance[J]. Aircraft Engineering and Aerospace Technology, 2023, 2:2667.
[44] Zhao Y H, Yan L, Dai J C, et al. Robust planning system for fast autonomous flight in complex unknown environment using sparse directed frontier points[J]. Drones,2023, 7(3):219.
[45] Choi J, Kim H M, Hwang H J, et al. Modular reinforcement learning for autonomous UAV flight control[J].Drones, 2023, 7(7):418.
[46] Zhu X D, Lai J Z, Zhou B C, et al. A cooperative localization method for leader-follower multiple UAVs using continuous relative ranging information[J]. Guidance,Navigation and Control, 2023, 3(2):2350010.
[47] Yang G B, Wang T, Yang M, et al. Adaptive tracking control for unknown dynamics systems with SINDYcbased sparse identification[J]. Guidance, Navigation and Control, 2023, 3(2):2350009.
[48] Liu G Q, Li B, Duan G R. An optimal FASA approach for UAV trajectory tracking control[J]. Guidance, Navigation and Control, 2023, 3(2):2350015.
[49] Zhang C H, Huang G J, Liu L, et al. Webuav-3M:A benchmark for unveiling the power of million-scale deep UAV tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7):9186-9205.
[50] Zou F, Li J, Niu Y F. Time-coordinated path following for multiple agile fixed-wing UAVs with end-roll expectations[J]. Guidance, Navigation and Control, 2023, doi:10.1142/S2737480723500206.
[51] Gao X H, Wang L, Yu X Y, et al. Conditional probability based multi-objective cooperative task assignment for heterogeneous UAVs[J]. Engineering Applications of Artificial Intelligence, 2023, 123:106404.
[52] Wang K H, Zhang X, Qiao X Y, et al. Adjustable fully adaptive cross-entropy algorithms for task assignment of multi-UAVs[J]. Drones, 2023, 7(3):204.
[53] Jiang H H, Wang G Y, Liu Q, et al. Hierarchical multiUAVs task assignment based on dominance rough sets[J]. Applied Soft Computing, 2023, 143:110445.
[54] Yuan D P. UAVS task assignment based on hybrid swarm intelligence algorithm[C]//2023 8th International Conference on Image, Vision and Computing(ICIVC).Dalian, China:IEEE, 2023:783-788.
[55] Wang W F, Ru L, Lv M L, et al. Multi-time-stage collaborative task assignment for heterogeneous UAVs using CBBA[C]//2023 9th International Conference on Control, Automation and Robotics(ICCAR). Beijing, China:IEEE, 2023:193-198.
[56] Jia Z S, Xiao B, Qian H Y. Improved mixed discrete particle swarms based multi-task assignment for UAVs[C]//2023 IEEE 12th Data Driven Control and Learning Systems Conference(DDCLS). Xiangtan, China:IEEE,2023:442-448.
[57] Xu L, Cao X B, Du W B, et al. Cooperative path planning optimization for multiple UAVs with communication constraints[J]. Knowledge-based Systems, 2023,260:110164.
[58] Zhang D Y, Li X W, Ren G Q, et al. Three-dimensional path planning of UAVs in a complex dynamic environment based on environment exploration twin delayed deep deterministic policy gradient[J]. Symmetry, 2023,15(7):1371.
[59] Luo X L, Zhang T Y, Xu W X, et al. Multi-tier 3D trajectory planning for cellular-connected UAVs in complex urban environments[J]. Symmetry, 2023, 15(9):1628.
[60] Samir M, Sharafeddine S, Assi C M, et al. UAV trajectory planning for data collection from time-constrained iot devices[J]. IEEE Transactions on Wireless Communications, 2019, 19(1):34-46.
[61] 段海滨,邱华鑫.基于群体智能的无人机集群自主控制[M].北京:科学出版社, 2018.
[62] 胡树欣,张安,孙嫚憶,等.基于一致性理论和S-MPC的四旋翼编队协同避障[J].系统工程与电子技术,2023, doi:11.2422.TN.20230905.2126.004.
[63] Dixit A, Agrawal P, Misra A, et al. Adaptive sliding mode controller based consensus protocol for swarm of UAVs[J]. Aircraft Engineering and Aerospace Technology, 2023, 95(4):619-628.
[64] Yan D H, Zhang W G, Chen H, et al. Robust control strategy for multi-UAVs system using MPC combined with Kalman-consensus filter and disturbance observer[J]. ISA Transactions, 2023, 135:35-51.
[65] Yan C, Wang C, Xiang X J, et al. Collision-avoiding flocking with multiple fixed-wing UAVs in obstaclecluttered environments:A task-specific curriculumbased MADRL approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, doi:10.1109/TNNLS.2023.3245124.
[66] Song Y, Lim S, Myung H, et al. Distributed swarm system with hybrid-flocking control for small fixed-wing UAVs:Algorithms and flight experiments[J]. Expert Systems with Applications, 2023, 229:120457.
[67] 段海滨,孙永斌.无人机空中加油自主控制[M].北京:科学出版社, 2023.
[68] Hou Y Q, Liang X L, Zhang J Q, et al. Hierarchical decision-making framework for multiple UCAVs autonomous confrontation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(11):13953-13968.
[69] Gong Z H, Xu Y, Luo D L. UAV cooperative air combat maneuvering confrontation based on multi-agent reinforcement learning[J]. Unmanned Systems, 2023, 11(3):273-286.
[70] Li S Y, Wu Q X, Du B, et al. Autonomous maneuver decision-making of UCAV with incomplete information in human-computer gaming[J]. Drones, 2023, 7(3):157.
[71] Xia W, Zhou Z Y, Jiang W Y, et al. Dynamic UAV swarm confrontation:An imitation based on mobile adaptive networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5):7183-7202.
[72] Wu P C, Wang H Q, Liang G W, et al. Research on unmanned aerial vehicle cluster collaborative countermeasures based on dynamic non-zero-sum game under asymmetric and uncertain information[J]. Aerospace,2023, 10(8):711.
[73] Ren Z, Zhang D, Tang S, et al. Cooperative maneuver decision making for multi-UAV air combat based on incomplete information dynamic game[J]. Defence Technology, 2023, 27:308-317.
[74] Abdallaoui S, Ikaouassen H, Kribèche A, et al. Autonomous vehicle control systems-state of the art of decision-making and maneuver execution[J]. Authorea,2023:1-12.
[75] 美国海军加快兵力调整步伐,图谋打造无人舰队维持海上霸权[EB/OL].(2023-09-28)[2023-12-02]. https://baijiahao. baidu. com/s? id=1778237524515707882&wfr=spider&for=pc.
[76] 美海军太平洋舰队5月1日启动其第二次“无人系统一体化战斗问题”演习[EB/OL].(2023-05-08)[2023-12-02]. https://weibo.com/ttarticle/p/show?id=23094048990-43594863075.
[77] 美海军举办“数字魔爪”演习以提高无人系统的杀伤力[EB/OL].(2023-11-07)[2023-12-02]. https://mp.weixin.qq.com/s?__biz=MzUxMTAyNzc0NQ==&mid=22475189-77&idx=1&sn=1ad19e7376f01e3acd4d4f43b681a7a&chksm=f97b344fce0cbd59981ad8d8d8cf7b56f22ba423af24-cc36adedcfacf33433bdcc2bf9bb0c4d&scene=27.
[78] Qamar R A, Sarfraz M, Rahman A, et al. Multi-criterion multi-UAV task allocation under dynamic conditions[J].Journal of King Saud University-Computer and Information Sciences, 2023, 35(9):101734.
[79] 王峰,黄子路,孟臣,等.基于KnCMPSO算法的异构无人机协同多任务分配[J].自动化学报, 2023, 49(2):399-414.
[80] 滕康,周勇.基于当前统计模型改进的机动目标自适应跟踪算法[J].现代雷达, 2023, 1:1-9.
[81] 王传云,苏阳,王琳霖,等.面向反制无人机集群的多目标连续鲁棒跟踪算法[J].航空学报, 2023, 1:1-15.
[82] Wang B H, Chen W S, Zhang B, et al. A nonlinear observer-based approach to robust cooperative tracking for heterogeneous spacecraft attitude control and formation applications[J]. IEEE Transactions on Automatic Control, 2023, 68(1):400-407.
[83] Cheng W L, Zhang K, Jiang B. Fixed-time fault-tolerant formation control for a cooperative heterogeneous multiagent system with prescribed performance[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems,2023, 53(1):462-474.
[84] Wang Y H, Yu G, Xie W, et al. Robust saturated formation tracking control of multiple quadrotors with switching communication topologies[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6):3744-3753.
[85] 空军第三届“无人争锋”挑战赛落幕[EB/OL].(2023-08-11)[2023-12-02]. https://tv.cctv.cn/2023/08/11/VIDEmg-8boIb511ycQdXnpJLW230811.shtml.
[86] 张珣,张静,胡中雨.国外无人机反制技术发展探析[J].数字通信世界, 2023(4):4-6.
[87] 英国牵头的五国将为乌克兰提供价值1.15亿美元的防空装备[EB/OL].(2023-08-18)[2023-12-02]. https://baijiahao.baidu.com/sid=1774557468477040954&wfr=spider&for=pc.
[88] “军队-2023”国际军事技术论坛新式反无人机装备[EB/OL].(2023-09-01)[2023-12-02]. https://mil. sohu.com/a/716814629_121245527.
[89] 乌克兰接收新装备,反无人机系统、“月神”NG无人机[EB/OL].(2023-09-11)[2023-12-02]. https://weibo.com/ttarticle/p/show?id=2309404944831502745834.
[90] 雷神技术验证低慢小无人机防御系统,美陆军正在重建近程防空力量[EB/OL].(2023-10-25)[2023-12-02].https://mil.ifeng.com/c/8UlaRC6qI9R.
[91] 美国陆军战士集装箱军用反无人机系统[EB/OL].(2023-11-23)[2023-12-03]. https://mp.weixin.qq.com/s?__biz=MzI4OTkyNDgxNA==&mid=2247867493&idx=2-&sn=e0894b443b6795ba848ca8.
[92] Dong Y X, Ma Y J, Li Y, et al. High-precision realtime UAV target recognition based on improved YOLOv4[J]. Computer Communications, 2023, 206:124-132.
[93] Huang B, Li J N, Chen J J, et al. Anti-UAV410:A thermal infrared benchmark and customized scheme for tracking drones in the wild[J]. IEEE Transactions on Pattern Analysis&Machine Intelligence, 2023(1):1-14.
[94] Choi H H, Oh J, Kang K M, et al. Idle-less slotted ALOHA protocol for drone swarm identification[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8):11080-11085.
[95] Souli N, Kolios P, Ellinas G. Multi-agent system for rogue drone interception[J]. IEEE Robotics and Automation Letters, 2023, 8(4):2221-2228.
[96] Feng Z K, Huang M X, Wu Y Y, et al. Approximating nash equilibrium for anti-UAV jamming Markov game using a novel event-triggered multi-agent reinforcement learning[J]. Neural Networks, 2023, 161:330-342.
[97] 钟春来,杨洋,曹立佳,等.基于视觉的无人机自主着陆研究综述[J].航空兵器, 2023, 30(5):104-114.