专题:2023年科技热点回眸

2023年新型光电半导体材料热点回眸

  • 马伟 ,
  • 凡群平 ,
  • 刘宇航 ,
  • 闫晗 ,
  • 周科 ,
  • 王艺林 ,
  • 赵超 ,
  • 毕召召 ,
  • 吴强 ,
  • 王炳俊 ,
  • 白海瑞
展开
  • 西安交通大学金属材料强度国家重点实验室, 西安 710049
马伟,长江学者特聘教授,研究方向为有机光电子材料形貌表征和同步辐射X射线散射技术开发,电子信箱:msewma@xjtu.edu.cn

收稿日期: 2023-12-29

  修回日期: 2024-01-05

  网络出版日期: 2024-04-09

基金资助

科技部重点研发计划国际交流合作项目(2022YFE0132400);陕西省科技创新团队项目(2020TD-002)

Hot spots review for new photovoltaic semiconductor materials in 2023

  • MA Wei ,
  • FAN Qunping ,
  • LIU Yuhang ,
  • YAN Han ,
  • ZHOU Ke ,
  • WANG Yilin ,
  • ZHAO Chao ,
  • BI Zhaozhao ,
  • WU Qiang ,
  • WANG Bingjun ,
  • BAI Hairui
Expand
  • State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2023-12-29

  Revised date: 2024-01-05

  Online published: 2024-04-09

摘要

第三代光电半导体具有可溶液低成本加工,透明轻薄,柔韧性好,可大面积成膜以及具有光电响应和离子传输能力等独特优势。聚焦此类半导体材料所制备的器件,回顾了有机光伏以及有机/无机杂化钙钛矿光伏的最新进展,探讨了其在柔性自供电、建筑光伏一体化等应用场景下的显著优势,讨论了第三代发光器件在材料选择和结构设计等方面的发展及其在照明和显示领域的应用前景;盘点了第三代半导体材料在人工光电突触方面的最新进展,主要聚焦于新机理、新器件结构、新功能,同时介绍了人工突触器件在感存算一体芯片、神经网络、智能仿生器件方面的最新应用。凝练了该领域所面临的重点科学问题,并展望了未来的科研及应用趋势。

本文引用格式

马伟 , 凡群平 , 刘宇航 , 闫晗 , 周科 , 王艺林 , 赵超 , 毕召召 , 吴强 , 王炳俊 , 白海瑞 . 2023年新型光电半导体材料热点回眸[J]. 科技导报, 2024 , 42(1) : 188 -203 . DOI: 10.3981/j.issn.1000-7857.2024.01.012

Abstract

Third-generation photovoltaic semiconductors have the unique advantages of solution-compatible low-cost processing, transparency, flexibility, large-area film formation, photo-responsive and ion-transport capabilities. Focusing on devices prepared from such semiconductor materials, this paper reviews recent advances in organic photovoltaic as well as organic/inorganic hybrid perovskite photovoltaic, and explores their significant advantages in application scenarios such as flexible self-powered electricity supply and building integrated photovoltaic. At the same time, the development of thirdgeneration light-emitting diode in terms of material selection and structural design, and their application prospects in the field of lighting and display are discussed. In addition, the latest advances of third-generation semiconductor materials in artificial optoelectronic synapses are discussed, mainly focusing on new mechanisms, new device structures, and new functions. The latest applications of artificial synaptic devices in integrated sensing-memory-computing chips, neural networks, and intelligent bionic devices are also introduced. The key scientific issues for the field are briefly summarized, and an outlook for future scientific research and application breakthroughs is presented.

参考文献

[1] Meng X, Xing Z, Hu X, et al. Large-area flexible organic solar cells:Printing technologies and modular design[J].Chinese Journal of Polymer Science, 2022, 40(12):1522-1566.
[2] Xie C, Liu Y, Wei W, et al. Large-area flexible organic solar cells with a robust silver nanowire-polymer composite as transparent top electrode[J]. Advanced Functional Materials, 2022, 33(1):2210675.
[3] Cai P, Song C, Lei S, et al. A robust and thickness-insensitive hybrid cathode interlayer for high-efficiency and stable inverted organic solar cells[J]. Journal of Materials Chemistry A, 2023, 11(35):18723-18732.
[4] Seo S, Lee J W, Kim D J, et al. Poly(dimethylsiloxane)-block-PM6 polymer donors for high-performance and mechanically robust polymer solar cells[J]. Advanced Materials, 2023, 35(24):e2300230.
[5] Zhou X, Wu H, Bothra U, et al. Over 31%efficient indoor organic photovoltaics enabled by simultaneously reduced trap-assisted recombination and non-radiative recombination voltage loss[J]. Materials Horizons, 2023, 10(2):566-575.
[6] Kim T H, Yu B S, Ko H W, et al. Self-powering sensory device with multi-spectrum image realization for smart indoor environments[J]. Advanced Materials, 2023, doi:10.1002/adma.202307523.
[7] Fall S, Wang J, Regrettier T, et al. Self-powered dynamic glazing based on nematic liquid crystals and organic photovoltaic layers for smart window applications[J]. ACS Applied Materials&Interfaces, 2023, 15(3):4267-4274.
[8] Nair N M, Shakthivel D, Panidhara K M, et al. Self-powered e-skin based on integrated flexible organic photovoltaics and transparent touch sensors[J]. Advanced Intelligent Systems, 2023, 15(3):4267-4274.
[9] Zhao Y P, Li Z Q, Deger C, et al. Achieving sustainability of greenhouses by integrating stable semi-transparent organic photovoltaics[J]. Nature Sustainability, 2023, 6(5):539-548.
[10] Xiao L, Li Y, Zhang H, et al. Semitransparent organic solar cells with homogeneous transmission and colorful reflection enabled by an ITO-free microcavity architecture[J]. Advanced Materials, 2023, doi:10.1002/adma.20-2303844.
[11] Liang N, Tian R, Xu Y, et al. Trans-reflective structural color filters assisting multifunctional-Integrated semitransparent photovoltaic window[J]. Advanced Materials,2023, 35(22):2300360.
[12] Yue W, Yang H, Cai H, et al. Printable high-efficiency and stable FAPbBr3perovskite solar cells for multifunctional building-integrated photovoltaics[J]. Advanced Materials, 2023, 35(36):2301548.
[13] Ritzer D B, Abdollahi N B, Ruiz-Preciado M A, et al.Translucent perovskite photovoltaics for building integration[J]. Energy&Environmental Science, 2023, 16(5):2212-2225.
[14] Park S M, Wei M, Xu J, et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells[J]. Science, 2023, 381(6654):209-215.
[15] Park S M, Wei M, Lempesis N, et al. Low-loss contacts on textured substrates for inverted perovskite solar cells[J]. Nature, 2023, 624(7991):289-294.
[16] Yu S, Xiong Z, Zhou H, et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells[J]. Science, 2023, 382(6677):1399-1404.
[17] Li Z, Sun X, Zheng X, et al. Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells[J]. Science, 2023, 382(6668):284-289.
[18] Yang Y, Cheng S, Zhu X, et al. Inverted perovskite solar cells with over 2,000 h operational stability at 85℃using fixed charge passivation[J]. Nature Energy, 2023, doi:10.1038/s41560-023-01377-7.
[19] Miao Y, Ren M, Chen Y, et al. Green solvent enabled scalable processing of perovskite solar cells with high efficiency[J]. Nature Sustainability, 2023, 6(11):1465-1473.
[20] Fan X C, Wang K, Shi Y Z, et al. Ultrapure green organic light-emitting diodes based on highly distorted fusedπ-conjugated molecular design[J]. Nature Photonics,2023, 17(3):280-285.
[21] Yoshida K, Gong J, Kanibolotsky A L, et al. Electrically driven organic laser using integrated OLED pumping[J].Nature, 2023, 621(7980):746-752.
[22] Sun P, Liu D, Zhu F, et al. An efficient solid-solution crystalline organic light-emitting diode with deep-blue emission[J]. Nature Photonics, 2023, 17(3):264-272.
[23] Wan L, Liu Y, Fuchter M J, et al. Anomalous circularly polarized light emission in organic light-emitting diodes caused by orbital-momentum locking[J]. Nature Photonics, 2022, 17(2):193-199.
[24] Tan Z-K, Moghaddam R S, Lai M L, et al. Bright lightemitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9):687-692.
[25] Sun Y, Ge L, Dai L, et al. Bright and stable perovskite light-emitting diodes in the near-infrared range[J]. Nature, 2023, 615(7954):830-835.
[26] Wang H, Xu W, Wei Q, et al. In-situ growth of low-dimensional perovskite-based insular nanocrystals for highly efficient light emitting diodes[J]. Light:Science&Applications, 2023, 12(1):62.
[27] Min H, Chang J, Tong Y, et al. Additive treatment yields high-performance lead-free perovskite light-emitting diodes[J]. Nature Photonics, 2023, 17(9):755-760.
[28] Han D, Wang J, Agosta L, et al. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs[J]. Nature, 2023, 622(7983):493-498.
[29] Li Z, Chen Z, Shi Z, et al. Charge injection engineering at organic/inorganic heterointerfaces for high-efficiency and fast-response perovskite light-emitting diodes[J].Nature Communications, 2023, 14(1):6441.
[30] Chu Z, Zhang W, Jiang J, et al. Blue light-emitting diodes based on quasi-two-dimensional perovskite with efficient charge injection and optimized phase distribution via an alkali metal salt[J]. Nature Electronics, 2023, 6(5):360-369.
[31] Zhao J, Lo L-W, Yu Z, et al. Handwriting of perovskite optoelectronic devices on diverse substrates[J]. Nature Photonics, 2023, 17(11):964-971.
[32] Liu H, Shi G, Khan R, et al. Large-area flexible perovskite light-emitting diodes enabled by inkjet printing[J]. Advanced Materials, 2023, doi:10.1002/adma.202309921.
[33] Li J, Du P, Guo Q, et al. Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays[J]. Nature Photonics, 2023, 17(5):435-441.
[34] Kim T, Kim K-H, Kim S, et al. Efficient and stable blue quantum dot light-emitting diode[J]. Nature, 2020,586(7829):385-389.
[35] Chen X, Lin X, Zhou L, et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling[J]. Nature Communications, 2023, 14(1):284.
[36] Gao Y, Li B, Liu X, et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasiFermi-level splitting[J]. Nature Nanotechnology, 2023,18(10):1168-1174.
[37] Shen X, Kamath A, Guyot-Sionnest P. Mid-infrared cascade intraband electroluminescence with HgSe-CdSe core-shell colloidal quantum dots[J]. Nature Photonics,2023, 17(12):1042-1046.
[38] Jiang Y, Sun C, Xu J, et al. Synthesis-on-substrate of quantum dot solids[J]. Nature, 2022, 612(7941):679-684.
[39] Wang S, Chen X, Zhao C, et al. An organic electrochemical transistor for multi-modal sensing, memory and processing[J]. Nature Electronics, 2023, 6(4):281-291.
[40] Liu S, Zeng J, Wu Z, et al. An ultrasmall organic synapse for neuromorphic computing[J]. Nature Communications, 2023, 14(1):7655.
[41] Van Doremaele E R W, Ji X, Rivnay J, et al. A retrainable neuromorphic biosensor for on-chip learning and classification[J]. Nature Electronics, 2023, 6(10):765-770.
[42] Chen H, Hou Y, Shi Y, et al. Organic all-photonic artificial synapses enabled by anti-stokes photoluminescence[J]. Journal of the American Chemical Society, 2023, 145(22):11988-11996.
[43] Liu Q, Wei Q, Ren H, et al. Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite[J]. Nature Communications, 2023, 14(1), doi:10.1038/s41467-023-43034-3.
[44] Chen K, Hu H, Song I, et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping[J]. Nature Photonics, 2023, 17(7):629-637.
[45] Wu X, Wang S, Huang W, et al. Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multitask learning[J]. Nature Communications, 2023, 14(1):468.
[46] Pan X, Shi J, Wang P, et al. Parallel perception of visual motion using light-tunable memory matrix[J]. Science Advances, 2023, 9(39):1-8.
[47] Li T, Miao J, Fu X, et al. Reconfigurable, non-volatile neuromorphic photovoltaics[J]. Nature Nanotechnology,2023, 18(11):1303-1310.
[48] Zhu X, Gao C, Ren Y, et al. High-contrast bidirectional optoelectronic synapses based on 2D molecular crystal heterojunctions for motion detection[J]. Advanced Materials, 2023, 35(24):2301468.
[49] Kamaei S, Liu X, Saeidi A, et al. Ferroelectric gating of two-dimensional semiconductors for the integration of steep-slope logic and neuromorphic devices[J]. Nature Electronics, 2023, 6(9):658-668.
[50] Kang J-H, Shin H, Kim K S, et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions[J]. Nature Materials,2023, 22(12):1470-1477.
文章导航

/