专题:2023年科技热点回眸

2023年生命科学热点回眸

  • 张文阳 ,
  • 杨昱鸽 ,
  • 朱恒乐 ,
  • 朱芳 ,
  • 王呈呈 ,
  • 胡荣贵
展开
  • 1. 中国科学院大学分子细胞科学卓越创新研究中心, 上海 200032;
    2. 贵州大学医学院, 贵阳 550025
张文阳,硕士研究生,研究方向为蛋白质稳态与蛋白质降解调控与分子识别,电子信箱:zhangwenyang2022@sibcb.ac.cn;杨昱鸽(共同第一作者),硕士研究生,研究方向为蛋白质稳态与蛋白质降解调控与分子识别,电子信箱:yangyuge2021@sibcb.ac.cn;朱恒乐(共同第一作者),硕士研究生,研究方向为蛋白质降解调控与分子识别,电子信箱:zhuhengle2023@sibcb.ac.cn

收稿日期: 2023-12-30

  修回日期: 2024-01-05

  网络出版日期: 2024-04-09

基金资助

科学技术部脑科学重大项目科技创新2030(2021ZD0203900);贵州省科技计划项目(黔科合基础项目[2020]1Y086);贵州省卫健委科学技术基金项目(gzwkj2022-219);国家自然科学基金项目(92253302)

Research highlights of bioscience in 2023

  • ZHANG Wenyang ,
  • YANG Yuge ,
  • ZHU Hengle ,
  • ZHU Fang ,
  • WANG Chengcheng ,
  • HU Ronggui
Expand
  • 1. Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Shanghai 200032, China;
    2. Medical School, Guizhou University, Guiyang 550025, China

Received date: 2023-12-30

  Revised date: 2024-01-05

  Online published: 2024-04-09

摘要

2023年,生命科学多个领域的研究取得突破性进展。重点回顾其中一部分已经、正在和未来非常可能改变人类对生命科学研究的前沿热点:人工智能正越来越成为生命科学和医学应用的有力且重要工具;基于GLP-1激动剂的出现和空前的广泛应用;相分离、体外胚胎模型、神经科学、发育生物学等领域新的技术的进一步优化和应用;针对β-淀粉样蛋白的抗体疗法、干细胞及免疫疗法、mRNA疫苗、CRISPR基因编辑疗法等新的临床治疗手段的出现和初步临床应用。这些研究进展不但进一步拓展人类对生命本质奥秘的理解,也正在为阿尔兹海默症、肿瘤、病毒感染等一系列重大人类疾病的患者带来福音。

本文引用格式

张文阳 , 杨昱鸽 , 朱恒乐 , 朱芳 , 王呈呈 , 胡荣贵 . 2023年生命科学热点回眸[J]. 科技导报, 2024 , 42(1) : 150 -173 . DOI: 10.3981/j.issn.1000-7857.2024.01.010

Abstract

In 2023, breakthrough advancements were made in various fields of life sciences. This article mainly reviews some of those developments that have changed and will likely continue to change our technological, perspective, and investigative approaches to life sciences: The artificial intelligence as an increasingly powerful and important tool for applications in life sciences and medicine; The emergence and unprecedentedly widespread use of GLP-1 agonists; the further optimization and application of new technologies in areas such as phase separation, in vitro embryo models, neuroscience, and developmental biology; and the advent and initial clinical application of new clinical treatments like antibody therapy against beta-amyloid,stem cell and immunotherapy, mRNA vaccines, and CRISPR gene-editing therapies. These research advancements are not only further expanding our understanding of the mysteries of life itself but also bringing hope to patients suffering from a series of significant human diseases such as Alzheimer's, cancer, viral infections, and more.

参考文献

[1] Lock S. What is AI chatbot phenomenon ChatGPT and could it replace humans[N]. The Guardian, 2022, 5.
[2] Van N R, Perkel J M. AI and science:What 1,600 researchers think[J]. Nature, 2023, 621(7980):672-675.
[3] Thorp H H. ChatGPT is fun, but not an author[J]. American Association for the Advancement of Science, 2023,379(6630):313.
[4] Savage N. Drug discovery companies are customizing ChatGPT:Here's how[J]. Nature Biotechnology, 2023, 41:585-586.
[5] Wang F, Feng X, Kong R, et al. Generating new protein sequences by using dense network and attention mechanism[J]. Mathematical Biosciences and Engineering,2023, 20(2):4178-4197.
[6] Watson J L, Juergens D, Bennett N R, et al. De novo design of protein structure and function with RFdiffusion[J].Nature, 2023, 620(7976):1089-1100.
[7] Torres S V, Leung P J Y, Venkatesh P, et al. De novo design of high-affinity binders of bioactive helical peptides[J]. Nature, 2023, 12, doi:s41586-023-06953-1.
[8] Kim H Y, Lampertico P, Nam J Y, et al. An artificial intelligence model to predict hepatocellular carcinoma risk in Korean and Caucasian patients with chronic hepatitis B[J]. Journal of Hepatology, 2022, 76(2):311-318.
[9] Martinino A, Aloulou M, Chatterjee S, et al. Artificial intelligence in the diagnosis of hepatocellular carcinoma:A systematic review[J]. Journal of Clinical Medicine, 2022,11(21):6368.
[10] Nauck M A, Quast D R, Wefers J, et al. GLP-1 receptor agonists in the treatment of type 2 diabetes-state-ofthe-art[J]. Molecular Metabolism, 2021, 46:101102.
[11] Alexopoulos A S, Buse J B. Initial injectable therapy in type 2 diabetes:Key considerations when choosing between glucagon-like peptide 1 receptor agonists and insulin[J]. Metabolism, 2019, 98:104-111.
[12] Davies M J, Aroda V R, Collins S, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association(ADA)and the European Associ ation for the Study of Diabetes(EASD)[J]. Diabetologia, 2022, 65(12):1925-1966.
[13] Ussher J R, Drucker D J. Glucagon-like peptide 1 receptor agonists:Cardiovascular benefits and mechanisms of action[J]. Nature Reviews Cardiology, 2023, 20(7):463-474.
[14] Arastu N, Cummins O, Uribe W, et al. Efficacy of subcutaneous semaglutide compared to placebo for weight lo ss in obese, non-diabetic adults:A systematic review&meta-analysis[J]. International Journal of Clinical Pharmacy, 2022, 44(4):852-859.
[15] Rubino D, Abrahamsson N, Davies M, et al. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity:The step 4 randomized clinical trial[J]. JAMA,2021, 325(14):1414-1425.
[16] Tushuizen M E, Diamant M, Heine R J. Postprandial dysmetabolism and cardiovascular disease in type 2 diabetes[J]. Postgraduate Medical Journal, 2005, 81(951):1-6.
[17] Yin Y, Zhou X E, Hou L, et al. An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain[J]. Cell Discovery,2016, 2:16042.
[18] Ghosh P, Fontanella R A, Scisciola L, et al. Targeting redox imbalance in neurodegeneration:Characterizing the role of GLP-1 receptor agonists[J]. Theranostics, 2023,13(14):4872-4884.
[19] Dalle S, Ravier M A, Bertrand G. Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass:New therapeutic strategies and consequences for drug screening[J]. Cell Signal, 2011, 23(3):522-528.
[20] Gros R, You X, Baggio L L, et al. Cardiac function in mice lacking the glucagon-like peptide-1 receptor[J].Endocrinology, 2003, 144(6):2242-2252.
[21] Goedert M. Alzheimer's and Parkinson's diseases:The prion concept in relation to assembled Aβ, tau, and α-synuclein[J]. Science, 2015, 349(6248):601.
[22] Stefanoska K, Gajwani M, Tan A R P, et al. Alzheimer's disease:Ablating single master site abolishes tau hyperphosphorylation[J]. Science Advances, 2022, 8(27):eabl-8809.
[23] Zhang W, Xiao D, Mao Q, et al. Role of neuroinflammation in neurodegeneration development[J]. Signal Transduction and Targeted Therapy, 2023, 8(1):267.
[24] Jucker M, Walker L C. Alzheimer's disease:From immunotherapy to immunoprevention[J]. Cell, 2023, 186(20):4260-4270.
[25] Jucker M, Walker L C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases[J]. Nature Neuroscience, 2018, 21(10):1341-1349.
[26] Hur J Y, Frost G R, Wu X, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease[J]. Nature, 2020, 586(7831):735-740.
[27] Mahley R W, Huang Y. Apolipoprotein E sets the stage:Response to injury triggers neuropathology[J]. Neuron,2012, 76(5):871-885.
[28] Yoshiyama Y, Higuchi M, Zhang B, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model[J]. Neuron, 2007, 53(3):337-351.
[29] Nisbet R M, Polanco J C, Ittner L M, et al. Tau aggregation and its interplay with amyloid-β[J]. Acta Neuropathologica, 2014, 129(2):207-220.
[30] Maphis N, Xu G, Kokiko-cochran O N, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain[J]. Brain,2015, 138(6):1738-1755.
[31] Venegas C, Heneka M T. Danger-associated molecular patterns in Alzheimer's disease[J]. Journal of Leukocyte Biology, 2017, 101(1):87-98.
[32] Onyango I G, Jauregui G V,ČARNáM, et al. Neuroinflammation in Alzheimer's disease[J]. Biomedicines,2021, 9(5):524.
[33] Couzin-Frankel J, Hand E, Langin K, et al. Runners-Up[J]. Science, 2023, 382(6676):1228-1233.
[34] Cummings J, Osse A M L, Cammann D, et al. Anti-amyloid monoclonal antibodies for the treatment of Alzheimer's disease[J]. BioDrugs, 2024, 38:5-22.
[35] Golde T E, Levey A I. Immunotherapies for Alzheimer's disease[J]. Science, 2023, 382(6676):1242-1244.
[36] Teunissen C E, Verberk I M W, Thijssen E H, et al.Blood-based biomarkers for Alzheimer's disease:Towards clinical implementation[J]. The Lancet Neurology,2022, 21(1):66-77.
[37] Chen Y, Hong Z, Wang J, et al. Circuit-specific gene therapy reverses core symptoms in a primate Parkinson's disease model[J]. Cell, 2023, 186(24):5394-410.e18.
[38] Przedborski S. The two-century journey of Parkinson disease research[J]. Nature Reviews Neuroscience, 2017, 18(4):251-259.
[39] Gao C, Jiang J, Tan Y, et al. Microglia in neurodegenerative diseases:Mechanism and potential therapeutic targets[J]. Signal Transduction and Targeted Therapy,2023, 8(1):359.
[40] Duffy M F, Collier T J, Patterson J R, et al. Lewy bodylike alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration[J]. Journal of Neuroinflammation, 2018, 15(1):129.
[41] Chatzi C, Brade T, Duester G. Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia[J]. PLoS Biology, 2011, 9(4):e1000609.
[42] Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP:Contribution to the apoptotic theory in Parkinson's disease[J]. Progress in Neurobiology, 2001, 65(2):135-172.
[43] Poewe W, Seppi K, Tanner C M, et al. Parkinson disease[J]. Nature Reviews Disease Primers, 2017, 3:17013.
[44] Kikuchi T, Morizane A, Doi D, et al. Human iPS cellderived dopaminergic neurons function in a primate Parkinson's disease model[J]. Nature, 2017, 548(7669):592-596.
[45] Maimaitili M, Chen M, Febbraro F, et al. Enhanced production of mesencephalic dopaminergic neurons from lineage-restricted human undifferentiated stem cells[J]. Nature Communications, 2023, 14(1):7871.
[46] Park S, Park C W, Eom J H, et al. Preclinical and doseranging assessment of hESC-derived dopaminergic progenitors for a clinical trial on Parkinson's disease[J].Cell Stem Cell, 2024, 31(1):25-38.e8.
[47] Arnold C, Webster P. 11 clinical trials that will shape medicine in 2024[J]. Nature Medicine, 2023, 29(12):2964-2968.
[48] Malhi G S, Mann J J. Depression[J]. The Lancet, 2018,392(10161):2299-2312.
[49] Santomauro D F, Mantilla H A M, Shadid J, et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic[J]. The Lancet, 2021, 398(10312):1700-1712.
[50] Holingue C. Mental disorders around the world:Facts and figures from the WHO world mental health surveys[J]. American Journal of Psychiatry, 2018, 175(9):911-912.
[51] Vos T, Barber R M, Bell B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013:A systematic analysis for the Global Burden of Disease Study 2013[J]. The Lancet, 2015, 386(9995):743-800.
[52] Marx W, Penninx B W J H, Solmi M, et al. Major depressive disorder[J]. Nature Reviews Disease Primers,2023, 9(1):44.
[53] Kuehner C. Why is depression more common among women than among men?[J]. The Lancet Psychiatry,2017, 4(2):146-158.
[54] Yuan M, Yang B, Rothschild G, et al. Epigenetic regulation in major depression and other stress-related disorders:Molecular mechanisms, clinical relevance and therapeutic potential[J]. Signal Transduction and Targeted Therapy, 2023, 8(1):309.
[55] Chesney E, Goodwin G M, Fazel S. Risks of all-cause and suicide mortality in mental disorders:A meta-review[J]. World Psychiatry, 2014, 13(2):153-160.
[56] Whooley M A, Wong J M. Depression and cardiovascular disorders[J]. Annual Review of Clinical Psychology,2013, 9(1):327-354.
[57] Howard D M, Adams M J, Clarke T K, et al. Genomewide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions[J]. Nature Neuroscience, 2019, 22(3):343-352.
[58] Guo B, Zhang M, Hao W, et al. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression[J]. Translational Psychiatry, 2023, 13(1):5.
[59] Knowland D, Lim B K. Circuit-based frameworks of depressive behaviors:The role of reward circuitry and beyond[J]. Pharmacology Biochemistry and Behavior, 2018,174:42-52.
[60] Fries G R, SaldanaA V A, Finnstein J, et al. Molecular pathways of major depressive disorder converge on the synapse[J]. Molecular Psychiatry, 2022, 28(1):284-297.
[61] Burke H M, Davis M C, Otte C, et al. Depression and cortisol responses to psychological stress:A meta-analysis[J]. Psychoneuroendocrinology, 2005, 30(9):846-856.
[62] Osimo E F, Pillinger T, Rodriguez I M, et al. Inflammatory markers in depression:A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls[J]. Brain, Behavior, and Immunity, 2020, 87:901-909.
[63] Cryan J F, O'riordan K J, Cowan C S M, et al. The microbiota-gut-brain axis[J]. Physiological Reviews, 2019,99(4):1877-2013.
[64] Li K, Zhou T, Liao L, et al. β CaMKII in lateral habenula mediates core symptoms of depression[J]. Science,2013, 341(6149):1016-1020.
[65] Cui Y, Yang Y, Ni Z, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression[J]. Nature, 2018, 554(7692):323-327.
[66] Yang Y, Cui Y, Sang K, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression[J].Nature, 2018, 554(7692):317-322.
[67] Ma S, Chen M, Jiang Y, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb[J]. Nature, 2023, 622(7984):802-809.
[68] Willner P, Scheel-Krüger J, Belzung C. The neurobiology of depression and antidepressant action[J]. Neurosci ence&Biobehavioral Reviews, 2013, 37(10):2331-2371.
[69] Malhi G S, Bassett D, Boyce P, et al. Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders[J]. Australian and New Zealand Journal of Psychiatry, 2015, 49(12):1087-1206.
[70] Marwaha S, Palmer E, Suppes T, et al. Novel and emerging treatments for major depression[J]. Lancet, 2023, 401(10371):141-153.
[71] Papp M, Cubala W J, Swiecicki L, et al. Perspectives for therapy of treatment-resistant depression[J]. British Journal of Pharmacology, 2022, 179(17):4181-4200.
[72] Espinoza R T, Kellner C H. Electroconvulsive therapy[J]. The New England Journal of Medicine, 2022, 386(7):667-672.
[73] Runia N, Mol G J J, Hillenius T, et al. Effects of deep brain stimulation on cognitive functioning in treatmentresistant depression:A systematic review and meta-analysis[J]. Molecular Psychiatry, 2023, 9, doi:10.1038/s41380-023-02262-1.
[74] Anand A, Mathew S J, Sanacora G, et al. Ketamine versus ECT for nonpsychotic treatment-resistant major depression[J]. The New England Journal of Medicine,2023, 388(25):2315-2325.
[75] Zanos P, Moaddel R, Morris P J, et al. Ketamine and ketamine metabolite pharmacology:Insights into therapeutic mechanisms[J]. Pharmacological Reviews, 2018,70(3):621-660.
[76] Qian T, Wang H, Wang P, et al. A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments[J]. Nature Biotechnology, 2023,41(7):1-14.
[77] Wang H, Qian T, Zhao Y, et al. A tool kit of highly selective and sensitive genetically encoded neuropeptide sensors[J]. Science, 2023, 382(6672):eabq8173.
[78] Mueller I, Zimmerman P A, Reeder J C. Plasmodium malariae and plasmodium ovale-the'bashful'malaria parasites[J]. Trends in Parasitology, 2007, 23(6):278-283.
[79] Yam X Y, Preiser P R. Host immune evasion strategies of malaria blood stage parasite[J]. Molecular BioSystems,2017, 13(12):2498-2508.
[80] Cowman A F, Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell[J]. Journal of cell Biology, 2012, 198(6):961-971.
[81] Beeson J G, Kurtovic L, Valim C, et al. The RTS,S malaria vaccine:Current impact and foundation for the future[J]. Science Translational Medicine, 2022, 14(671):eabo6646.
[82] Rts S. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa:Final results of a phase 3, individually randomised, controlled trial[J]. Lancet, 2015, 386(9988):31-45.
[83] Datoo M S, Natama H M, SoméA, et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years'follow-up in children in Burkina Faso:A phase 1/2b randomised controlled trial[J].The Lancet Infectious Diseases, 2022, 22(12):1728-1736.
[84] Alimonti J B, Ball T B, Fowke K R. Mechanisms of CD4+T lymphocyte cell death in human immunodeficiency virus infection and AIDS[J]. Journal of General Virology, 2003, 84(7):1649-1661.
[85] Sepkowitz K A. AIDS—the first 20 years[J]. New England Journal of Medicine, 2001, 344(23):1764-1772.
[86] Holmes C B, Losina E, Walensky R P, et al. Review of human immunodeficiency virus type 1-related opportunistic infections in sub-Saharan Africa[J]. Clinical Infectious Diseases, 2003, 36(5):652-662.
[87] Vogel M, Schwarze-Zander C, Wasmuth J C, et al. The treatment of patients with HIV[J]. DeutschesÄrzteblatt International, 2010, 107(28/29):507.
[88] Butler E T, Chamberlin M. Bacteriophage SP6-specific RNA polymerase. I. Isolation and characterization of the enzyme[J]. Journal of Biological Chemistry, 1982, 257(10):5772-5778.
[89] Krieg P A, Melton D. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs[J]. Nucleic Acids Research, 1984, 12(18):7057-7070.
[90] Dunn J J, Studier F W, Gottesman M. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements[J]. Journal of Molecular Biology, 1983, 166(4):477-535.
[91] Studier F W, Moffatt B A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes[J]. Journal of Molecular Biology, 1986, 189(1):113-130.
[92] KarikóK, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3[J]. Journal of Biological Chemistry, 2004, 279(13):12542-12550.
[93] KarikóK, Buckstein M, Ni H, et al. Suppression of RNA recognition by toll-like receptors:The impact of nucleoside modification and the evolutionary origin of RNA[J]. Immunity, 2005, 23(2):165-175.
[94] Nobel Committee for Physiology or Medicine 2023[N/OL].[2023-12-12]. https://www.nobelprize.org/about/the-nobel-committee-for-physiology-or-medicine/.
[95] Svitkin Y V, Cheng Y M, Chakraborty T, et al. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density[J]. Nucleic Acids Research,2017, 45(10):6023-6036.
[96] Hikabe O, Hamazaki N, Nagamatsu G, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line[J]. Nature, 2016, 539(7628):299-303.
[97] Hamazaki N, Kyogoku H, Araki H, et al. Reconstitution of the oocyte transcriptional network with transcription factors[J]. Nature, 2021, 589(7841):264-269.
[98] Yoshino T, Suzuki T, Nagamatsu G, et al. Generation of ovarian follicles from mouse pluripotent stem cells[J].Science, 2021, 373(6552):eabe0237.
[99] Murakami K, Hamazaki N, Hamada N, et al. Generation of functional oocytes from male mice in vitro[J]. Nature,2023, 615(7954):900-906.
[100] Method of the Year 2023:Methods for modeling development[J]. Nature Methods, 2023, 20(12):1831-1832.
[101] Rossant J, Tam P P L. Opportunities and challenges with stem cell-based embryo models[J]. Stem Cell Reports, 2021, 16(5):1031-1038.
[102] Rossant J, Tam P P L. New insights into early human development:Lessons for stem cell derivation and differentiation[J]. Cell Stem Cell, 2017, 20(1):18-28.
[103] Liu X, Tan J P, Schröder J, et al. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids[J]. Nature, 2021, 591(7851):627-632.
[104] Abel A, Sozen B. Shifting early embryology paradigms:Applications of stem cell-based embryo models in bioengineering[J]. Current Opinion in Genetics&Development, 2023, 81:102069.
[105] Yu L, Wei Y, Duan J, et al. Blastocyst-like structures generated from human pluripotent stem cells[J]. Nature,2021, 591(7851):620-626.
[106] Amadei G, Handford C E, Qiu C, et al. Embryo model completes gastrulation to neurulation and organogenesis[J]. Nature, 2022, 610(7930):143-153.
[107] Lau K Y C, Rubinstein H, Gantner C W, et al. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development[J].Cell Stem Cell, 2022, 29(10):1445-1458.
[108] Eisenstein M. Seven technologies to watch in 2023[J].Nature, 2023, 613(7945):794-797.
[109] Weatherbee B A T, Gantner C W, Iwamoto-Stohl L K,et al. Pluripotent stem cell-derived model of the postimplantation human embryo[J]. Nature, 2023, 622(7983):584-593.
[110] Oldak B, Wildschutz E, Bondarenko V, et al. Complete human day 14 post-implantation embryo models from naive ES cells[J]. Nature, 2023, 622(7983):562-573.
[111] De G N, De P L, Munsie M.'Ceci n'est pas un embryon?'The ethics of human embryo model research[J].Nature Methods, 2023, 20(12):1863-1867.
[112] Pasricha S R, Darkesmith H. Hemoglobinopathies in the fetal position[J]. New England Journal of Medicine,2018, 379(17):1675-1677.
[113] Bauer D E, Orkin S H. Hemoglobin switching's surprise:The versatile transcription factor BCL11A is a master repressor of fetal hemoglobin[J]. Current Opinion in Genetics&Development, 2015, 33:62-70.
[114] Bak R O, Dever D P, Porteus M H. CRISPR/Cas9 genome editing in human hematopoietic stem cells[J]. Nature Protocols, 2018, 13(2):358-376.
[115] Frangoul H, Ho T W, Corbacioglu S. CRISPR-Cas9gene editing for sickle cell disease and β-thalassemia[J]. The New England Journal of Medicine, 2021, 384(23):252-260.
[116] Gibson B A, Doolittle L K, Schneider M W G, et al. Organization of chromatin by intrinsic and regulated phase separation[J]. Cell, 2019, 179(2):470-484.
[117] Murray D T, Kato M, Lin Y, et al. Structure of FUS rotein fibrils and its relevance to self-assembly and phase separation of low-complexity domains[J]. Cell,2017, 171(3):615-627.
[118] Mehta S, Zhang J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer[J].Nature Reviews Cancer, 2022, 22(4):239-252.
[119] Ding M, Xu W, Pei G, et al. Long way up:Rethink diseases in light of phase separation and phase transition[J]. Protein Cell, 2023, doi:org/10.1093/procel/pwad057.
[120] Li P, BanjadeE S, Cheng H C, et al. Phase transitions in the assembly of multivalent signalling proteins[J].Nature, 2012, 483(7389):336-340.
[121] Zhao P, Han W, Shu Y, et al. Liquid-liquid phase separation drug aggregate:Merit for oral delivery of amorphous solid dispersions[J]. Journal of Controlled Release, 2023, 353:42-50.
文章导航

/