专题:2023年科技热点回眸

2023年海洋气象研究热点回眸

  • 王麟 ,
  • 王东晓 ,
  • 邱春华 ,
  • 张广隶 ,
  • 邹仲水 ,
  • 胡湛 ,
  • 戴潇铭 ,
  • 杨桐 ,
  • 席紫涵 ,
  • 贺垠凯 ,
  • 张微微 ,
  • 张一 ,
  • 廖喜扬 ,
  • 姚凤朝 ,
  • 孟峥
展开
  • 1. 中山大学海洋科学学院, 珠海 519082;
    2. 南方海洋科学与工程广东省实验室(珠海), 珠海 519080
王麟,助理教授,研究方向为热带印度洋海气相互作用,电子信箱:wanglin58@mail.sysu.edu.cn

收稿日期: 2023-12-22

  修回日期: 2024-01-09

  网络出版日期: 2024-04-09

基金资助

国家自然科学基金项目(92158204);南方海洋科学与工程广东省实验室(珠海)创新团队项目(311023005)

Review of hotspots of marine meteorology in 2023

  • WANG Lin ,
  • WANG Dongxiao ,
  • QIU Chunhua ,
  • ZHANG Guangli ,
  • ZOU Zhongshui ,
  • HU Zhan ,
  • DAI Xiaoming ,
  • YANG Tong ,
  • XI Zihan ,
  • HE Yinkai ,
  • ZHANG Weiwei ,
  • ZHANG Yi ,
  • LIAO Xiyang ,
  • YAO Fengchao ,
  • MENG Zheng
Expand
  • 1. School of Marine Science, Sun Yat-sen University, Zhuhai 519082, China;
    2. Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519080, China

Received date: 2023-12-22

  Revised date: 2024-01-09

  Online published: 2024-04-09

摘要

回顾了2022—2023年有关台风、海雾、季风、海气通量理论、海浪模拟、寒潮等海洋气象学研究进展和在此期间海洋气象观测技术的提升与发展。研究多关注于各类海洋与气象观测和模拟技术的提升,以及海洋气象灾害潜在致灾因子的形成和发展机理,例如近年来台风路径多变,快速发展的案例频发;季风、海雾、海浪、海气界面通量等的观测和发展机理研究、模式参数化改进是未来海洋气象学的重要研究方向,这些研究成果对海洋气象灾害的预测和预警提供一定的科学基础和应用价值。

本文引用格式

王麟 , 王东晓 , 邱春华 , 张广隶 , 邹仲水 , 胡湛 , 戴潇铭 , 杨桐 , 席紫涵 , 贺垠凯 , 张微微 , 张一 , 廖喜扬 , 姚凤朝 , 孟峥 . 2023年海洋气象研究热点回眸[J]. 科技导报, 2024 , 42(1) : 124 -135 . DOI: 10.3981/j.issn.1000-7857.2024.01.008

Abstract

This paper reviews the research progress of marine meteorology during 2022-2023 on typhoon, sea fog, monsoon, airsea flux, wave simulation, cold wave and the improvement and development of marine meteorological observation technology during this period. These researches mainly focused on the improvement of various oceanic and meteorological observation and simulation technologies, as well as the formation and development mechanisms of potential factors of marine meteorological disasters, e. g., diverse typhoon paths and the rapid development cases. The observation and development mechanisms of monsoon, sea fog, wave and air-sea flux and the improvement of model parameterization are important research directions of marine meteorology in the future. These research results provide certain scientific bases and application values for prediction and warning of marine meteorological disasters.

参考文献

[1] 杨展,李希圣,黄伟雄.地理学大辞典[M].安徽:安徽人民出版社, 1992.
[2] 孙即霖,彭垣.海洋小百科全书:海洋气象[M].广州:中山大学出版社, 2012.
[3] Shan K, Lin Y, Chu P S, et al. Seasonal advance of intense tropical cyclones in a warming climate[J]. Nature,2023, doi:10.1038/s41586-023-06544-0.
[4] Chan J C L. Frequency and intensity of landfalling tropical cyclones in East Asia:Past variations and future projections[J]. Meteorology, 2023, 2:171-190.
[5] Huang X, Zhou T J, Chan J C, et al. Understanding uncertainties in projections of western North Pacific tropical cyclogenesis[J]. Environmental Research Letters, 2023, 18(11):114037.
[6] Cao X, Wu R G, Xu L T, et al. A trans-season out-ofphase relationship of tropical cyclogenesis between the Western North Pacific and South China Sea[J]. Journal of Climate, 2023, 36:3697-3716.
[7] Chen X, Guo Y P, Tan Z M, et al. Influence of different types of ENSO events on the tropical cyclone rainfall over the western North Pacific[J]. Climate Dynamics, 2023, 60(11/12):3969-3982.
[8] Li X M, Zhan R F, Wang Y Q, et al. Recent increase in rapid intensification events of tropical cyclones along China coast[J]. Climate Dynamics, 2023, doi:10.1007/s00382-023-06917-1.
[9] Liu H Y, Gu J F, Wang Y Q. Consistent pattern of rainfall asymmetry in binary tropical cyclones[J]. Geophysical Research Letters, 2023, 50:e2022GL101866.
[10] Zhang X Y, Ditchek S D, Kristen L C, et al. Global and regional characteristics of radially outward propagating tropical cyclone diurnal pulses[J]. Journal of Geophsical Research-Atmospheres, 2023, 128:e2022JD037660.
[11] Zhang X Y, Xu W X. Diurnal Variations on the initiation time and intensification rate of rapidly intensifying tropical cyclones[J]. Geophysical Research Letters,2023, 50(14):e2023GL103551.
[12] Sun Z Y, Bai L, Zhu X S, et al. The extraordinarily large vortex structure of Typhoon In-fa(2021), observed by spaceborne microwave radiometer and synthetic aperture radar[J]. Atmospheric Research, 2023, 292:106837.
[13] Zheng Y X, Ma Z H, Tang J, et al. The coastal effect on ahead-of-eye-center cooling induced by tropical cyclones[J]. Journal of Physical Oceanography, 2023, 53:1519-1534.
[14] Zhang H. Modulation of upper ocean vertical temperature structure and heat content by a fast-moving tropical cyclone[J]. Journal of Physical Oceanography, 2023,53(2):493-508.
[15] Ye S N, Zhang R H, Wang H N. The role played by tropical cyclones-induced freshwater flux forcing in the upper-ocean responses:A case for Typhoon Yutu(2018)[J]. Ocean Modelling, 2023, 184:102211.
[16] He L K, Li Q L, Wang Y Q, et al. Effects of urban expansion and anthropogenic heat enhancement on tropical cyclone precipitation in the Greater Bay Area of China[J]. Journal of Geophsical Research-Atmospheres,2023, 128:e2022JD038184.
[17] Ye G J, Zhang X, Yu H. Modifications to three-dimensional turbulence parameterization for tropical cyclone simulation at convection-permitting resolution[J]. Journal of Advances in Modeling Earth Systems, 2023, 15(4):e2022MS003530.
[18] Li D Y, Tan Z. The role of ocean-atmosphere interactions in tropical cyclone intensity predictability[J]. Journal of the Atmospheric Sciences, 2023, 80:1213-1226.
[19] Zhuo J Y, Tan Z M. A deep-learning reconstruction of tropical cyclone size metrics 1981—2017:Examining trends[J]. Journal of Climate, 2023, 36:5103-5123.
[20] Zhang H, Jin M Y, Zhang H Y, et al. Deep learning approach for forecasting sea surface temperature response to tropical cyclones in the Western North Pacific[J].Deep Sea Research Part I:Oceanographic Research Papers, 2023, 197:104042.
[21] Cui H X, Tang D L, Mei W, et al. Predicting tropical cyclone-induced sea surface temperature responses using machine learning[J]. Geophysical Research Letters,2023, 50:e2023GL104171.
[22] Wang L Y, Tan Z. Deep learning parameterization of the tropical cyclone boundary layer[J]. Deep Learning Parameterization of the Tropical Cyclone Boundary Layer,2023, 15(1):e2022MS003034.
[23] 宛霞,唐碧.地海空天多平台协同观测台风科学试验成功[N].中国气象报, 2020-10-20(1).
[24] 王婉,刘钊.地空天协同开展台风加密观测试验[N].中国气象报, 2022-08-12(1).
[25] 刘倩,安涛,孙夏.中国气象局首次开展南海台风多平台协同机动观测[N].中国气象报, 2023-09-05(1).
[26] Gilson G F, Jiskoot H, Gueye S, et al. A climatology of Arctic fog along the coast of East Greenland[J]. Quarterly Journal of the Royal Meteorological Society, 2023,doi:10.1002/qj.4617.
[27] Song S T, Chen Y, Chen X Y, et al. Adapting to a foggy future along trans-arctic shipping routes[J]. Geophysical Research Letters, 2023, 50(8):e2022GL102395.
[28] Yi L, Li K F, Chen X Y, et al. Summer marine fog distribution in the Chukchi-Beaufort Seas[J]. Earth and Space Science, 2023, 10(2):e2021EA002049.
[29] Pope N H, Igel A L. Identifying important microphysical properties and processes for marine fog forecasts[J].Monthly Weather Review, 2023, 151(9):2427-2441.
[30] Xiao Y F, Liu R J, Ma Y, et al. MERRA-2 reanalysisaided sea fog detection based on CALIOP observation over North Pacific[J]. Remote Sensing of Environment,2023, 292:113583.
[31] Yang L, Ding S S, Liu J W, et al. Effects of longwave radiative cooling on advection fog over the Northwest Pacific Ocean:Observations and large eddy simulations[J/OL]. EGUsphere, 2023.[2023-12-01]. https://doi.org/10.5194/egusphere-2023-1494.
[32] Yun J H, Ha K J. Physical processes in sea fog formation and characteristics of turbulent air-sea fluxes at Socheongcho ocean research station in the Yellow sea[J].Frontiers in Marine Science, 2022, 9:825973.
[33] Kim Y, Ryu H S, Hong S. Data-to-data translationbased nowcasting of specific sea fog using geostationary weather satellite observation[J]. Atmospheric Research,2023, 290:106792.
[34] Wang X Y, Dai G Y, Wu S H, et al. Classification of turbulent mixing driven sources in marine atmospheric boundary layer with use of shipborne coherent doppler lidar observations[J]. Journal of Geophysical ResearchAtmospheres, 2023, 128(20):e2023JD038918.
[35] Li X F, Shen D L, Zheng G, et al. comprehensive satellite observations and a numerical study of a Wintertime Shallow Sea Smoke Event in the Yellow Sea[J]. Journal of the Atmospheric Sciences, 2022, 79(12):3163-3179.
[36] Hu L J, Xu R, Yang M, et al. Enhancing maritime safety and efficiency:A Comprehensive sea fog monitoring system for Ningbo Zhoushan Port[J]. Atmosphere, 2023, 14(10):1513.
[37] Tu X, Yao R S, Hu L J, et al. Modifications to three-dimensional turbulence parameterization for tropical cyclone simulation at convection-permitting resolution, observation and simulation study on the macro-microphysical characteristics of a coastal fog offshore Zhejiang Province of China[J]. Atmospheric Research, 2023, 282:106537.
[38] Kong X J, Jiang Z H, Ma M, et al. The temporal and spatial distribution of sea fog in offshore of China based on FY-4A satellite data[C]. Journal of Physics:Conference Series. IOP Publishing, 2023, 2486(1):012015.
[39] Han L G, Long J C, Xu F, et al. Decadal shift in sea fog frequency over the Northern South China Sea in spring:Interdecadal variation and impact of the Pacific Decadal Oscillation[J]. Atmospheric Research, 2022, 265:105905.
[40] Zhou M S, Huang H J, Lao H Q, et al. Feasibility analysis of early warning of sea fog within six hours for two harbors in the South China Sea[J]. Frontiers in Earth Science, 2022, 10:968744.
[41] Zuo Z, Zhang K. Link between the Land-Sea Thermal Contrast and the Asian Summer Monsoon[J]. Journal of Climate, 2023, 36(1):213-225.
[42] Liu B Q, Duan Y N. Diverse interannual variability of asian summer monsoon onset process[J]. Geophysical Research Letters, 2023, doi:10.1029/2022GL100583.
[43] Zhuang M, Duan A, Lu R, et al. Relative impacts of the orography and land-sea contrast over the indochina peninsula on the Asian summer monsoon between early and late summer[J]. Journal of Climate, 2022, 35(10):3037-3055.
[44] Lin S H, Dong B W, Yang S, et al. Causes of diverse impacts of ENSO on the Southeast Asian summer monsoon among CMIP6 Models[J]. Journal of Climate, 2021, 37(2):419-438.
[45] Lu M M, Yang S, Zhu C W, et al. Thermal impact of the Southern Tibetan Plateau on the Southeast Asian Summer Monsoon and Modulation by the Tropical Atlantic SST[J]. Journal of Climate, 2022, 36(5):1319-1330.
[46] Wang H, Li Z G, Li J P, et al. Interannual variation in the East Asian summer monsoon-tropical Atlantic SST relationship modulated by the Interdecadal Pacific Oscillation[J]. NPJ Climate and Atmospheric Science, 2023, 6(1):169.
[47] Hu D, Duan A M, Tang Y H, et al. Delayed onset of the tropical Asian summer monsoon in CMIP6 can be linked to the cold bias over the Tibetan Plateau[J]. Environmental Research Letters, 2023, 18:11405.
[48] Huang J P, Zhou X J, Wu G X, et al. Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau[J]. Reviews of Geophysics, 2023, 61(3):e2022RG000771.
[49] Li X Y, Li Q Q, Ding Y H, et al. Possible influence of the interdecadal variation of the extratropical southern Indian Ocean SST on East Asian summer monsoon precipitation[J]. Atmospheric Research, 2023, 288:106721.
[50] Gui S, Yang R W, Zeng F, et al. Interdecadal variability in the interface between the indian summer monsoon and the East Asian Summer Monsoon[J]. Journal of Geophysical Research-Atmospheres, 2023, 128(20):e2022-JD038399.
[51] Dai L, Cheng T F, Wang B, et al. Subseasonal features of the Indian monsoon[J]. Journal of Climate, 2023, 36(20):7199-7211.
[52] Zhang D Q, Chen L J, Martin G M, et al. Seasonal prediction skill and biases in glosea5 relating to the East Asia winter monsoon[J]. Advances in Atmospheric Sciences, 2023, 40(11):2013-2028.
[53] Marusic I, Monty J P. Attached eddy model of wall turbulence[J]. Annual Review of Fluid Mechanics, 2019, 51(1):49-74.
[54] Sun J, French J R. Air-sea interactions in light of new understanding of air-land interactions[J]. Journal of the Atmospheric Sciences, 2016, 73(10):3931-3949.
[55] Babanin A V, McConochie J, Chalikov D. Winds near the surface of waves:Observations and modeling[J]. Journal of Physical Oceanography, 2018, 48(5):1079-1088.
[56] Voermans J J, Rapizo H, Ma H Y, et al. Air-sea momentum fluxes during tropical cyclone olwyn[J]. Journal of Physical Oceanography, 2019, 49(6):1369-1379.
[57] Huang J, Zou Z S, Zeng Q C, et al. The turbulent structure of the marine atmospheric boundary layer during and before a cold front[J]. Journal of the Atmospheric Sciences, 2021, 78(3):863-875.
[58] Liu C L, Li X Y, Song J B, et al. Characteristics of the marine atmospheric boundary layer under the influence of ocean surface waves[J]. Journal of Physical Oceanography, 2022, 52(6):1261-1276.
[59] Grare L, Lenain L, Melville W K. Wave-Coherent airflow and critical layers over ocean waves[J]. Journal of Physical Oceanography, 2013, 43(10):2156-2172.
[60] Miles J W. On the generation of surface waves by shear flows[J]. Journal of Fluid Mechanics, 1957, 3(2):185-204.
[61] Chen S, Qiao F, Zhang J A, et al. Swell modulation on wind stress in the constant flux layer[J]. Geophysical Research Letters, 2020, 47(20):e2020GL089883.
[62] Wu L C, Qiao F. Wind profile in the wave boundary layer and its application in a coupled atmosphere-wave model[J]. Journal of Geophysical Research-Oceans,2022, 127(2):e2021JC018123.
[63] Buckley M P, Veron F. Structure of the airflow above surface waves[J]. Journal of Physical Oceanography,2016, 46(5):1377-1397.
[64] Cao T, Shen L. A numerical and theoretical study of wind over fast-propagating water waves[J]. Journal of Fluid Mechanics, 2021, 919(A38):PII S0022112021004-16X.
[65] Grare L, Lenain L, Melville W K. Vertical profiles of the wave-induced airflow above ocean surface waves[J].Journal of Physical Oceanography, 2018, 48(12):2901-2922.
[66] Mahrt L, Thomas C K, Grachev A A, et al. Near-surface vertical flux divergence in the stable boundary layer[J].Boundary-Layer Meteorology, 2018, 169(3):373-393.
[67] Ortiz-Suslow D G, Kalogiros J, Yamaguchi R, et al. An evaluation of the constant flux layer in the atmospheric flow above the wavy air-sea interface[J]. Journal of Geophysical Research:Atmospheres, 2021, 126(8):e2020JD-032834.
[68] Huang J, Pickart R S, Chen Z M, et al. Role of air-sea heat flux on the transformation of Atlantic Water encircling the Nordic Seas[J]. Nature Communications, 2023, 14(1):141.
[69] Liu C W, Yang Q H, Xu M, et al. Response of sea surface heat fluxes to the South China Sea summer monsoon onset in 2021[J]. Atmospheric Research, 2023,282:106513.
[70] Barrell C, Renfrew I A, King J C, et al. Projected changes to wintertime air-sea turbulent heat fluxes over the subpolar North Atlantic Ocean[J]. Earths Future, 2023,11(4):e2022EF003337.
[71] Song X Z, Wang X Y, Cai W B, et al. Observed air-sea turbulent heat flux anomalies during the onset of the South China sea summer monsoon in 2021[J]. Monthly Weather Review, 2023, 151(9):2443-2464.
[72] Zhi X F, Pan M T, Song B, et al. Investigating air-sea interactions in the North Pacific on interannual timescales during boreal winter[J]. Atmospheric Research,2022, 269:106043.
[73] Mayer J, Haimberger L, Mayer M. A quantitative assessment of air-sea heat flux trends from ERA5 since 1950in the North Atlantic basin[J]. Earth System Dynamics,2023, 14(5):1085-1105.
[74] Giudici A, Jankowski M Z, Mannikus R, et al. A comparison of Baltic Sea wave properties simulated using two modelled wind data sets[J]. Estuarine Coastal and Shelf Science, 2023, 290:108401.
[75] Liu Y L, Huang L M, Ma X W, et al. A fast, high-precision deep learning model for regional wave prediction[J].Ocean Engineering, 2023, 288:115949.
[76] Wang M, Ying F X. Point and interval prediction for significant wave height based on LSTM-GRU and KDE[J].Ocean Engineering, 2023, 289:116247.
[77] Yu M, Wang Z F, Song D L, et al. Spatio-temporal ocean wave conditions forecasting using MA-TrajGRU model in the South China sea[J]. Ocean Engineering,2024, 291(1):116486.
[78] Yuan Y, Shen L L, Yan H M, et al. Three cold surges in China during the winter of 2020/2021 and their low-frequency features[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(5):1557-1575.
[79] Shao J H, Diao Y N. Analysis characteristics if the blocking cold surge paths and circulation in Autumn and Winter in China[J]. Periodical of Ocean University of China, 2023, 53(4):145-158.
[80] Liu Q, Huang L, Bai L Q. Delayed effects of large-scale cold surge on winter heavy rainfall in southern China[J].Atmospheric Research, 2023, 285:106632.
[81] Abdillah M R, Kanno Y, Iwasaki T, et al. Cold surge pathways in East Asia and their tropical impacts[J]. Journal of Climate, 2021, 34(1):157-170.
[82] Tan I, Reeder M J, Singh M S, et al. Wet and dry cold surges over the Maritime Continent[J]. Journal of Geophysical Research:Atmospheres, 2023, 128(12):e2022-JD038196.
[83] Aman N, Manomaiphiboon K, Pala-En N, et al. A study of urban haze and its association with cold surge and sea breeze for greater bangkok[J]. International Journal of Environmental Research and Public Health, 2023, 20(4):3482.
[84] Praja A S, Trismidianto. Impact of cold surge based on its strength on rainfall distribution in Western Indonesia[C]. International Conference on Radioscience, Equatorial Atmospheric Science and Environment, 2023, 290:349-357.
[85] Zheng F, Yuan Y, Ding Y H, et al. The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic[J]. Advances in Atmospheric Sciences, 2022, 39(4):546-552.
文章导航

/