专题:2023年科技热点回眸

2023年空间科学与深空探测热点回眸

  • 白青江 ,
  • 时蓬 ,
  • 宋婷婷 ,
  • 王琴 ,
  • 范全林 ,
  • 王赤
展开
  • 中国科学院国家空间科学中心, 北京 100190
白青江,副研究员,研究方向为空间科学发展战略,电子信箱:bqj@nssc.ac.cn

收稿日期: 2023-12-21

  修回日期: 2024-01-05

  网络出版日期: 2024-04-09

基金资助

中国科学院战略性先导科技专项(Y329181AAS);中国科学院学部咨询评议项目(E22191A11S)

Review of 2023 global space science advances

  • BAI Qingjiang ,
  • SHI Peng ,
  • SONG Tingting ,
  • WANG Qin ,
  • FAN Quanlin ,
  • WANG Chi
Expand
  • National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2023-12-21

  Revised date: 2024-01-05

  Online published: 2024-04-09

摘要

空间科学与深空探测为基础科学研究突破提供了第一手的观测数据,成就诸多有重要影响的新发现和新突破,不断开拓人类认识宇宙的新边界。主要依据国际顶刊空间科学研究亮点论文,结合中国空间科学任务情况,梳理了2023年全球空间科学重要进展,主要涉及宇宙起源和演化、月球和行星探测、系外行星发现与表征、日球层物理和载人航天等学科领域的热点,展望了2024年即将发射升空的空间科学任务。

本文引用格式

白青江 , 时蓬 , 宋婷婷 , 王琴 , 范全林 , 王赤 . 2023年空间科学与深空探测热点回眸[J]. 科技导报, 2024 , 42(1) : 87 -98 . DOI: 10.3981/j.issn.1000-7857.2024.01.005

Abstract

pace science and explorations provide the first-hand data for possible science breakthroughs and continue to push forward the frontiers of knowledge. The paper analyzes the global top discoveries which are grouped in 10 categories, based on the publications mainly in Nature and Science as well as major achievements by Chinese missions and experiments in 2023. These discoveries cover hot spots in the origin and evolution of the early universe, the lunar and planetary explorations, the search for exoplanets and characterization, heliophysics and manned spaceflight. The coming missions in 2024 are also prospected.

参考文献

[1] 王赤.空间科学突破的前瞻和中国的贡献[J].中国科学院院刊, 2022, 37(8):1050-1065.
[2] LabbéI, van Dokkum P, Nelson E, et al. A population of red candidate massive galaxies-600 Myr after the Big Bang[J]. Nature, 2023, 616:266-269.
[3] Costantin L, Pérez-González P G, Guo Y, et al. A Milky Way-like barred spiral galaxy at a redshift of 3[J]. Nature, 2023, 623:499-501.
[4] Curtis-Lake E, Carniani S, Cameron A, et al. Spectroscopic confirmation of four metal-poor galaxies at z=10.3-13.2[J]. Nature Astronomy, 2023, 7:622-632.
[5] Robertson B E, Tacchella S, Johnson B D, et al. Identification and properties of intense star-forming galaxies at redshifts z>10[J]. Nature Astronomy, 2023, 7:611-621.
[6] Spilker J S, Phadke K A, Aravena M, et al. Spatial variations in aromatic hydrocarbon emission in a dust-rich galaxy[J]. Nature, 2023, 618:708-711.
[7] Witstok J, Shivaei I, Smit R, et al. Carbonaceous dust grains seen in the first billion years of cosmic time[J]. Nature, 2023, 621:267-270.
[8] Taverna R, Turolla R, Muleri F, et al. Polarized x-rays from a magnetar[J]. Science, 2022, 378(6620):646-650.
[9] Bachetti M, Heida M, Maccarone T, et al. Orbital Decay in M82 X-2[J]. The Astrophysical Journal, 2022, 937(2),doi:10.3847/1538-4357/ac8d67.
[10] Chen Y, Hu S, Li J, et al. Chang'e-5 lunar samples shed new light on the Moon[J]. The Innovation Geoscience, 2023, 1(1):100014.
[11] Zhao R, Shen L Q, Xiao D D, et al. Diverse glasses revealed from Chang'E-5 lunar regolith[J]. National Science Review, 2023, 10(12):nwad079.
[12] Siegler M A, Feng J, Lehman-Franco K, et al. Remote detection of a lunar granitic batholith at Compton-Belkovich[J]. Nature, 2023, 620:116-121.
[13] Xiao L, Huang J, Kusky T, et al. Evidence for marine sedimentary rocks in Utopia Planitia:Zhurong rover observations[J]. National Science Review, 2023, 10(9):nwad137.
[14] Sharma S, Roppel R D, Murphy A E, et al. Diverse organic-mineral associations in Jezero crater, Mars[J]. Nature, 2023, 619:724-732.
[15] Rapin W, Dromart G, Clark B C, et al. Sustained wetdry cycling on early Mars[J]. Nature, 2023, 620:299-302.
[16] Le Maistre S, Rivoldini A, Caldiero A, et al. Spin state and deep interior structure of Mars from InSight radio tracking[J]. Nature, 2023, 619:733-737.
[17] Samuel H, Drilleau M, Rivoldini A, et al. Geophysical evidence for an enriched molten silicate layer above Mars's core[J]. Nature, 2023, 622:712-717.
[18] Khan A, Huang D, Durán C, et al. Evidence for a liquid silicate layer atop the Martian core[J]. Nature, 2023,622:718-723.
[19] Lee S van der. Deep Mars is surprisingly soft[J/OL]. Nature, 2023.[2023-12-18]. https://www.nature.com/articles/d41586-023-03151-x.
[20] Postberg F, Sekine Y, Klenner F, et al. Detection of phosphates originating from Enceladus's ocean[J]. Nature, 2023, 618:489-493.
[21] Trumbo S K, Brown M E. The distribution of CO2 on Europa indicates an internal source of carbon[J]. Science,2023, 381:1308-1311.
[22] Villanueva G L, Hammel H B, Milam S N, et al. Endogenous CO2 ice mixture on the surface of Europa and no detection of plume activity[J]. Science, 2023, 381:1305-1308.
[23] Yokoyama T, Nagashima K, Nakai I, et al. Samples returned from the asteroid Ryugu are similar to Ivunatype carbonaceous meteorites[J]. Science, 2023, 379:eabn7850.
[24] Naraoka H, Takano Y, Dworkin J P, et al. Soluble organic molecules in samples of the carbonaceous asteroid(162173)Ryugu[J]. Science, 2023, 379:eabn9033.
[25] Yabuta H, Cody G D, Engrand C, et al. Macromolecular organic matter in samples of the asteroid(162173)Ryugu[J]. Science, 2023, 379:eabn9057.
[26] Oba Y, Koga T, Takano Y, et al. Uracil in the carbonaceous asteroid(162173)Ryugu[J]. Nature Communications, 2023, 14:1292.
[27] Daly R T, Ernst C M, Barnouin O S, et al. Successful kinetic impact into an asteroid for planetary defence[J].Nature, 2023, 616:443-447.
[28] Thomas C A, Naidu S P, Scheirich P, et al. Orbital period change of Dimorphos due to the DART kinetic impact[J]. Nature, 2023, 616:448-451.
[29] Li J Y, Hirabayashi M, Farnham T L, et al. Ejecta from the DART-produced active asteroid Dimorphos[J]. Nature, 2023, 616:452-456.
[30] Cheng A F, Agrusa H F, Barbee B W, et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos[J]. Nature, 2023, 616:457-460.
[31] Graykowski A, Lambert R A, Marchis F, et al. Light curves and colours of the ejecta from Dimorphos after the DART impact[J]. Nature, 2023, 616:461-464.
[32] Exoplanet exploration:Planets beyond our Solar System[EB/OL].[2023-11-12]. https://exoplanets.nasa.gov.
[33] Peterson M S, Benneke B, Collins K, et al. A temperate Earth-sized planet with tidal heating transiting an M6star[J]. Nature, 2023, 617:701-705.
[34] Luque R, Osborn H P, Leleu A, et al. A resonant sextuplet of sub-Neptunes transiting the bright star HD110067[J]. Nature, 2023, 623:932-937.
[35] Standing M R, Sairam L, Martin D V, et al. Radial-velocity discovery of a second planet in the TOI-1338/BEBOP-1 circumbinary system[J]. Nature Astronomy,2023, 7:702-714.
[36] Currie T, Brandt G M, Brand T D, et al. Direct imaging and astrometric detection of a gas giant planet orbiting an accelerating star[J]. Science, 2023, 380:198-203.
[37] Hon M, Huber D, Rui N Z, et al. A close-in giant planet escapes engulfment by its star[J]. Nature, 2023, 618:917-920.
[38] De K, MacLeod M, Karambelkar V, et al. An infrared transient from a star engulfing a planet[J]. Nature, 2023,617:55-60.
[39] Kenworthy M, Lock S, Kennedy G, et al. A planetary collision afterglow and transit of the resultant debris cloud[J]. Nature, 2023, 622:251-254.
[40] Seidel J V, Nielsen L D, Sarkar S. JWST opens a window on exoplanet skies[J]. Nature, 2023, 614(7949):632-633.
[41] Rustamkulov Z, Sing D K, Mukherjee S, et al. Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM[J]. Nature, 2023, 614:659-663.
[42] Alderson L, Wakeford H R, Alam M K, et al. Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H[J]. Nature, 2023, 614:664-669.
[43] Feinstein A D, Radica M, Welbanks L, et al. Early Release Science of the exoplanet WASP-39b with JWST NIRISS[J]. Nature, 2023, 614:670-675.
[44] JWST Transiting Exoplanet Community Early Release Science Team. Identification of carbon dioxide in an exoplanet atmosphere[J]. Nature, 2023, 614:649-652.
[45] Ahrer E M, Stevenson K B, Mansfield M, et al. Early Release Science of the exoplanet WASP-39b with JWST NIRCam[J]. Nature, 2023, 614:653-658.
[46] Zack Savitsky. Lifting the veil[J]. Science, 2023, 379(6628):130-133
[47] Greene T P, Bell T J, Ducrot E, et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST[J]. Nature, 2023, 618:39-42.
[48] Zieba S, Kreidberg L, Ducrot E, et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1c[J]. Nature, 2023, 620:746-749.
[49] Coulombe L P, Benneke B, Challener R, et al. A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b[J]. Nature, 2023, 620:292-298.
[50] BernéO, Martin-Drumel M A, Schroetter I, et al. Formation of the methyl cation by photochemistry in a protoplanetary disk[J]. Nature, 2023, 621:56-59.
[51] Giuseppe Mandorlo. VIGIL:ESA space weather mission to L5[EB/OL].[2023-12-01]. https://lws.larc.nasa.gov/vfmo/pdf_files/04b_VFMO_PPC_Mandorlo_and_Bramanti_Vigil_Overview.pdf.
[52] AWE launching to space station to study atmospheric waves via airglow[EB/OL].[2023-11-23]. https://science.nasa.gov/science-research/heliophysics/awe-launchingto-space-station-to-study-atmospheric-waves-via-airglow.
[53] Raouafi N E, Stenborg G, Seaton D B, et al. Magnetic reconnection as the driver of the Solar wind[J]. The Astrophysical Journal, 2023, 945:28.
[54] Piersanti M, Ubertini P, Battiston R, et al. Evidence of an upper ionospheric electric field perturbation correlated with a gamma ray burst[J]. Nature Communications,2023, 14:7013.
[55] 中国国家太空实验室正式运行建立起近地空间科学与应用体系[EB/OL].[2023-11-25]. https://www.gov.cn/yaowen/liebiao/202308/content_6899018.htm.
[56] 中国空间站应用取得阶段性成果部分项目为载人登月“蓄力”[EB/OL].[2024-01-04]. https://www.gov.cn/yaowen/liebiao/202308/content_6899020.htm.
[57] Wakayama S, Kikuchi Y, Soejima M, et al. Effect of microgravity on mammalian embryo development evaluated at the International Space Station[J]. iScience, 2023, 26(11):108177.
[58] Three experiments heading to space station aim to support deep-space missions[EB/OL].[2023-12-05]. https://science.nasa.gov/science-research/biological-physicalsciences/three-experiments-heading-to-space-stationaim-to-support-deep-space-missions.
[59] 王赤,时蓬,白青江,等. 2022年空间科学与深空探测热点回眸[J].科技导报, 2023, 41(1):79-102.
文章导航

/