专题:2023年科技热点回眸

2023年原子核物理科技热点回眸

  • 马余刚
展开
  • 1. 复旦大学现代物理研究所, 核物理与离子束应用教育部重点实验室, 上海 200433;
    2. 国家自然科学基金委理论物理专款-上海核物理理论研究中心, 上海 200438
马余刚,教授,中国科学院院士,研究方向为原子核物理,电子信箱:mayugang@fudan.edu.cn

收稿日期: 2024-01-02

  修回日期: 2024-01-09

  网络出版日期: 2024-04-09

基金资助

国家自然科学基金项目(12147101,11925502,11935001,11961141003,11890714)

Annual review of the advances in nuclear physics

  • MA Yugang
Expand
  • 1. Key Laboratory of Nuclear Physics and Ion-beam Application(MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China;
    2. Shanghai Research Center for Theoretical Nuclear Physics, NSFC and Fudan University, Shanghai 200438, China

Received date: 2024-01-02

  Revised date: 2024-01-09

  Online published: 2024-04-09

摘要

核科学致力于研究从宇宙诞生初期到天体演化过程中的极端物质形态,一直以来是物质科学的前沿。其在今日仍不断有创造性的发现,并有着不可替代的作用。简要回顾了2023年原子核物理科技发展的前沿与热点,具体围绕长程规划与大科学装置、放射性核束物理、高能核物理、中微子物理、天体核物理等方向,其中不乏国内引领的优秀工作。而这些方向的突破为未来核科学的发展奠定了基础,也为国家安全、技术发展、人体健康和社会经济繁荣做出前所未有的贡献。

本文引用格式

马余刚 . 2023年原子核物理科技热点回眸[J]. 科技导报, 2024 , 42(1) : 30 -62 . DOI: 10.3981/j.issn.1000-7857.2024.01.002

Abstract

Nuclear science has always been at the forefront of material science, dedicated to researching the extreme states of matter from the early stages of the universe's creation to the process of celestial evolution. It continues to make creative discoveries to this day and plays an irreplaceable role. In this review, we will briefly summarize the frontiers and highlights of the development of nuclear physics and technology in 2023, showcasing domestic outstanding works. The breakthroughs in these areas have a foundation for the future development of nuclear science and made unprecedented contributions to national security,technology, health, and economic prosperity.

参考文献

[1] Nuclear Science Advisory Committee. A new era of discovery:The 2023 long range plan for nuclear science[R].NSAC, 2023.
[2] 曹须,常雷,畅宁波,等.中国极化电子离子对撞机计划[J].核技术, 2020, 43(2):3-61.
[3] Anderle D P, Bertone V, Cao X, et al. Electron-Ion collider in China[J]. Frontiers of Physics, 2021, 16:64701.
[4] Wang H W, Fan G T, Liu L X, et al. Commissioning of laser electron gamma beamline SLEGS at SSRF[J]. Nuclear Science and Techniques, 2022, 33(7):74-85.
[5] Pang X, Sun B H, Zhu L H, et al. Progress of photonuclear cross sections for medical radioisotope production at the SLEGS energy domain[J]. Nuclear Science and Techniques, 2023, 34(12):79-94.
[6] Niwase T, Watanabe Y X, Hirayama Y, et al. Discovery of new isotope 241U and systematic high-precision atomic mass measurements of neutron-rich Pa-Pu nuclei produced via multinucleon transfer reactions[J]. Physical Review Letters, 2023, 130(13):132502.
[7] Fang D Q, Hua H, Ma Y G, et al. Exploring the edge of nuclear stability on the proton-rich side[J]. Nuclear Physics News, 2023, 33(2):11-16.
[8] Tsukada K, Abe Y, Enokizono A, et al. First observation of electron scattering from online-produced radioactive target[J]. Physical Review Letters, 2023, 131(9):092502.
[9] Sarmiento L G, Roger T, Giovinazzo J, et al. Elucidating the nature of the proton radioactivity and branching ratio on the first proton emitter discovered 53mCo[J]. Nature Communications, 2023, 14:5961.
[10] Gray T J, Allmond J M, Xu Z, et al. Microsecond Isomer at the N=20 island of shape inversion observed at FRIB[J]. Physical Review Letters, 2023, 130(24):242501.
[11] Kondo Y, Achouri N L, Falou H, et al. First observation of 28O[J]. Nature, 2023, 620(7976):965-970.
[12] Li J G, Michel N, Xu F R. Unbound spectra of neutronrich oxygen isotopes predicted by the gamow shell model[J]. Physical Review C, 2021, 103(3):034305.
[13] Charity R J, Wylie J, Wang S M, et al. Strong evidence for 9N and the limits of existence of atomic nuclei[J].Physical Review Letters, 2023, 131(17):172501.
[14] Zhou L, Wang S, Fang D, et al. Recent progress in twoproton radioactivity[J]. Nuclear Science and Techniques,2022, 33(8):120-148.
[15] Stukel M, Hariasz L, Stefano D, et al. Rare 40K decay with implications for fundamental physics and geochronology[J]. Physical Review Letters, 2023, 131(5):052503.
[16] Duer M, Aumann T, Gernhäuser R, et al. Observation of a correlated free four-neutron system[J]. Nature, 2022,606(797615):678-682.
[17] Lazauskas R, Hiyama E, Carbonell J. Low energy structures in nuclear reactions with 4n in the final state[J].Physical Review Letters, 2023, 130(10):102501.
[18] Yang Z H, Ye Y L, Zhou B, et al. Observation of the exotic 02+cluster state in 8He[J]. Physical Review Letters,2023, 131(24):242501.
[19] Kegel S, Achenbach P, Bacca S, et al. Measurement of the α-particle monopole transition form factor challenges theory:A low-energy puzzle for nuclear forces?[J].Physical Review Letters, 2023, 130(15):152502.
[20] Michel N, Nazarewicz W, Płoszajczak M. Description of the Proton-Decaying 02+resonance of the α particle[J].Physical Review Letters, 2023, 131(24):242502.
[21] Oertzen W V, Freer M, Kanada-En'yo Y. Nuclear clusters and nuclear molecules[J]. Physics Reports, 2006,432(2):43-113.
[22] Zhou B, Funaki Y, Horiuchi H, et al. Nonlocalized clustering:A new concept in nuclear cluster structure physics[J]. Physical Review Letters, 2013, 110(26):262501.
[23] He W B, Ma Y G, Cao X G, et al. Giant dipole resonance as a fingerprint of α clustering configurations in 12C and 16O[J]. Physical Review Letters, 2014, 113(3):032506.
[24] 马余刚.原子核中的α团簇对核反应与相对论重离子碰撞的影响[J].核技术, 2023, 46(8):080001.
[25] Shen S H, Elhatisari S, Lähde T A, et al. Emergent geometry and duality in the carbon nucleus[J]. Nature Communications, 2023, 14:2777.
[26] Zhou B, Funaki Y, Horiuchi H, et al. The 5α condensate state in 20Ne[J]. Nature Communications, 2023, 14:8206.
[27] Li P J, Beaumel D, Lee J, et al. Validation of the 10Be ground-state molecular structure using 10Be(p,pα)6He triple differential reaction cross-section measurements[J].Physical Review Letters, 2023, 131(21):212501.
[28] Palazzo T, Mitchell A G, Lane G J, et al. Direct measurement of hexacontatetrapole, E6γ decay from 53mFe[J].Physical Review Letters, 2023, 130(12):122503.
[29] Cook K J, Rafferty D C, Hinde D J, et al. Colliding heavy nuclei take multiple identities on the path to fusion[J]. Nature Communications, 2023, 14:7988.
[30] Smits O, Düllmann C E, Indelicato P, et al. The quest for superheavy elements and the limit of the periodic table[J]. Nature Reviews Physics, 2023, doi:10.1038/s422-54-023-00668-y.
[31] RavlićA, Yüksel E, NikšićT, et al. Expanding the limits of nuclear stability at finite temperature[J]. Nature Communications, 2023, 14:4834.
[32] Novario S J, Lonardoni D, Gandolfi S, et al. Trends of neutron skins and radii of mirror nuclei from first principles[J]. Physical Review Letters, 2023, 130(3):032501.
[33] Hebborn C, Nunes F M, Lovell A E. New perspectives on spectroscopic factor quenching from reactions[J].Physical Review Letters, 2023, 130(21):212503.
[34] Abelev B I, Aggarwal M M, Ahammed Z, et al. Observation of an antimatter hypernucleus[J]. Science, 2010, 328(5974):58-62.
[35] Agakishiev H, Aggarwal M M, Ahammed Z, et al. Observation of the antimatter helium-4 nucleus[J]. Nature,2011, 473(7347):353-356.
[36] Adamczyk L, Adkins J K, Agakishiev G, et al. Measurement of interaction between antiprotons[J]. Nature, 2015,527(7578):345-348.
[37] Chen J H, Keane D, Ma Y G, et al. Antinuclei in heavyion collisions[J]. Physics Reports, 2018, 760:1-39.
[38] Adam J, Adamczyk L, Adams J R, et al. Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton[J]. Nature Physics, 2020, 16(4):409-412.
[39] Aboona B E, Adam J, Adamczyk L, et al. Observation of directed flow of hypernuclei 3ΛH and 4ΛH insNN=3 GeV Au+Au collisions at RHIC[J]. Physical Review Letters,2023, 130(21):212301.
[40] Liang Z T, Wang X N. Globally polarized quark-gluon plasma in non-central A+A collisions[J]. Physical Review Letters, 2005, 94(10):102301.
[41] Liang Z T, Wang X N. Spin alignment of vector mesons in non-central A+A collisions[J]. Physics Letters B,2005, 629(1):20-26.
[42] Ma Y G, Zhang S. Influence of Nuclear Structure in Relativistic Heavy-Ion Collisions[M]//Handbook of Nuclear Physics. Singapore:Springer, 2022.
[43] Abdallah M S, Aboona B E, Adam J, et al. Tomography of ultra-relativistic nuclei with polarized photon-gluon collisions[J]. Science Advances, 2023, 9(1):3903.
[44] Ma Y G. New type of double-slit interference experiment at Fermi scale[J]. Nuclear Science and Techniques,2023, 34(1):177-179.
[45] Ma Y G. Hypernuclei as a laboratory to test hyperon-nucleon interactions[J]. Nuclear Science and Techniques,2023, 34(6):202-205.
[46] Acharya S, AdamováD, Adler A, et al. Measurement of the lifetime andΛseparation energy of 3ΛH[J]. Physical Review Letters, 2023, 131(10):102302.
[47] Rodríguez-Sánchez J L, Cugnon J, David J-C, et al.Constraint of the nuclear dissipation coefficient in fission of hypernuclei[J]. Physical Review Letters, 2023,130(13):132501.
[48] Acharya S, AdamováD, Adler A, et al. Enhanced deuteron coalescence probability in jets[J]. Physical Review Letters, 2023, 131(4):042301.
[49] Adamczyk L, Adkins J K, Agakishiev G, et al. Global lambda hyperon polarization in nuclear collisions[J]. Nature, 2017, 548(7665):62-65.
[50] 梁作堂,王群,马余刚.高能重离子碰撞过程的自旋与手征效应专题[J].物理学报, 2023, 72(7):070101.
[51] 盛欣力,梁作堂,王群.重离子碰撞中的矢量介子自旋排列[J].物理学报, 2023, 72(7):072502.
[52] 阮丽娟,许长补,杨驰.夸克物质中的超子整体极化与矢量介子自旋排列[J].物理学报, 2023, 72(11):112401.
[53] 高建华,黄旭光,梁作堂,等.强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化[J].物理学报,2023, 72(7):072501.
[54] Abdallah M S, Aboona B E, Adam J, et al. Pattern of global spin alignment of?and K*0mesons in heavy-ion collisions[J]. Nature, 2023, 614(7947):244-248.
[55] Wang X N. Vector meson spin alignment by the strong force field[J]. Nuclear Science and Techniques, 2023, 34(1):15.
[56] Chen J H, Liang Z T, Ma Y G, et al. Perspective:Global spin alignment of vector mesons and strong force fields in heavy-ion collisions[J]. Science Bulletin, 2023, 68:874-877.
[57] 孙旭,周晨升,陈金辉,等.重离子碰撞中QCD物质整体极化的实验测量[J].物理学报, 2023, 72(7):072401.
[58] 马余刚. 2022年原子核物理科技热点回眸[J].科技导报, 2023, 41(1):14-29.
[59] Chen J H, Dong X, Ma Y G, et al. Measurements of the lightest hypernucleus(3ΛH):Progress and perspective[J].Science Bulletin, 2023, 68:3252-3260.
[60] Sheng X L, Oliva L, Liang Z T, et al. Spin alignment of vector mesons in heavy-ion collisions[J]. Physical Review Letters, 2023, 131(4):042304.
[61] Abdulhamid M I, Aboona B E, Adam J, et al. Hyperon polarization along the beam direction relative to the second and third harmonic event planes in isobar collisions atsNN=200 GeV[J]. Physical Review Letters, 2023,131(20):202301.
[62] Acharya S, AdamováD, Adler A, et al. Measurement of the J/ψpolarization with respect to the event plane in Pb-Pb collisions at the LHC[J]. Physical Review Letters, 2023, 131(4):042303.
[63] Aboona B E, Adam J, Adamczyk L, et al. Beam energy dependence of fifth-and sixth-order net-proton number fluctuations in Au+Au collisions at RHIC[J]. Physical Review Letters, 2023, 130(8):082301.
[64] Abdulhamid M I, Aboona B E, Adam J, et al. Beam energy dependence of triton production and yield ratio(Nt×Np/Nd2)in Au+Au collisions at RHIC[J]. Physical Review Letters, 2023, 130(20):202301.
[65] 张宇,张定伟,罗晓峰.相对论重离子碰撞中QCD相图的实验研究[J].核技术, 2023, 46(4):4-16.
[66] Sun K J, Chen L W, Ko C M, et al. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions[J]. Physics Letters B, 2017,774:103-107.
[67] Ko C M. Searching for QCD critical point with light nuclei[J]. Nuclear Science and Techniques, 2023, 34(5):80.
[68] 孙开佳,陈列文, Ko Che Ming,等.重离子碰撞中的轻核产生和QCD相变[J].核技术, 2023, 46(4):162-178.
[69] 丁亨通,李胜泰,刘俊宏.强磁场下的格点QCD研究进展[J].核技术, 2023, 46(4):99-110.
[70] 朱洲润,赵彦清,侯德富. QCD相结构的全息模型研究[J].核技术, 2023, 46(4):91-98.
[71] 杜轶伦,李程明,史潮,等.基于有效场论的QCD相图研究[J].核技术, 2023, 46(4):111-133.
[72] 尹伊. BEST合作组QCD相图研究进展[J].核技术,2023, 46(4):134-142.
[73] 李甫鹏,庞龙刚,王新年.基于机器学习的重离子碰撞中QCD相变的研究[J].核技术, 2023, 46(4):207-224.
[74] 陈倩,马国亮,陈金辉.重离子碰撞中守恒荷涨落与QCD相变的输运模型研究[J].核技术, 2023, 46(4):179-206.
[75] Ding H T, Huang W P, Mukherjee S, et al. Microscopic encoding of macroscopic universality:Scaling properties of dirac eigenspectra near QCD chiral phase transition[J]. Physical Review Letters, 2023, 131(16):161903.
[76] Aboona B E, Adam J, Adamczyk L, et al. Measurement of sequential upsilon suppression in Au+Au collisions at 200 GeV with the STAR experiment[J]. Physical Review Letters, 2023, 130(11):112301.
[77] Rapp R. Bottomonium suppression in heavy-ion collisions and the in-medium strong force[J]. Nuclear Science and Techniques, 2023, 34(4):63.
[78] He W B, Li Q F, Ma Y G, et al. Machine learning in nuclear physics at low and intermediate energies[J]. Science China(Physics,Mechanics&Astronomy), 2023, 66(8):5-23.
[79] He W B, Ma Y G, Pang L G, et al. High-energy nuclear physics meets machine learning[J]. Nuclear Science and Techniques, 2023, 34:88.
[80] Li P C, Steinheimer J, Reichert T, et al. Effects of a phase transition on two-pion interferometry in heavy ion collisions atsNN=2.4-7.7 GeV[J]. Science China Physics, Mechanics&Astronomy, 2023, 66(3):232011.
[81] Ma Y G, Pang L G, Wang R, et al. Phase transition study meets machine learning[J]. Chinese Physics Letters, 2023, 40(12):122101.
[82] Kuttan M O, Steinheimer J, Zhou K, et al. QCD equation of state of dense nuclear matter from a bayesian analysis of heavy-ion collision data[J]. Physical Review Letters, 2023, 131(20):202303.
[83] Pang L G, Wang X N. Bayesian analysis of nuclear equation of state at high baryon density[J]. Nuclear Science and Techniques, 2023, 34(12):194.
[84] Annala E, Gorda T, Hirvonen J, et al. Strongly interacting matter exhibits deconfined behavior in massive neutron stars[J]. Nature Communications, 2023, 14:8451.
[85] Neill D, Preston R, Newton W G, et al. Constraining the nuclear symmetry energy with multimessenger resonant shattering flares[J]. Physical Review Letters, 2023, 130(11):112701.
[86] Keller J, Hebeler K, Schwenk A. Nuclear equation of state for arbitrary proton fraction and temperature based on chiral effective field theory and a gaussian process emulator[J]. Physical Review Letters, 2023, 130(7):072701.
[87] Cubiss J G, Andreyev A N, Barzakh A E, et al. Deformation versus sphericity in the ground states of the lightest gold isotopes[J]. Physical Review Letters, 2023, 131(20):202501.
[88] Ryssens W, Giacalone G, Schenke B, et al. Evidence of hexadecapole deformation in Uranium-238 at the relativistic heavy ion collider[J]. Physical Review Letters,2023, 130(21):212302.
[89] Schenke B, Shen C, Tribedy P. Multiparticle and chargedependent azimuthal correlations in heavy-ion collisions at the relativistic heavy-ion collider[J]. Physical Review C, 2019, 99(4):044908.
[90] Jia J Y, Giacalone G, Zhang C J. Separating the impact of nuclear skin and nuclear deformation in high-energy isobar collisions[J]. Physical Review Letters, 2023, 131(2):022301.
[91] Giacalone G, Nijs G, Schee W. Determination of the neutron skin of 208Pb from ultrarelativistic nuclear collisions[J]. Physical Review Letters, 2023, 131(20):202302.
[92] Abdulhamid M I, Aboona B E, Adam J, et al. Measurements of the elliptic and triangular azimuthal anisotropies in central 3He+Au, d+Au and p+Au collisions at sNN=200 GeV[J]. Physical Review Letters, 2023, 130(24):242301.
[93] Mäntysaari H, Schenke B, Shen C, et al. Multiscale imaging of nuclear deformation at the electron-ion collider[J]. Physical Review Letters, 2023, 131(6):062301.
[94] He M, Rapp R. Bottom hadrochemistry in high-energy hadronic collisions[J]. Physical Review Letters, 2023,131(1):012301.
[95] Yang Z, Luo T, Chen W, et al. 3D structure of jet-induced diffusion wake in an expanding quark-gluon plasma[J]. Physical Review Letters, 2023, 130(5):052301.
[96] Qin G Y. 3D Wakes on the femtometer scale by supersonic jets[J]. Nuclear Science and Techniques, 2023,34:22.
[97] Ke W Y, Yin Y. Does a Quark-gluon plasma feature an extended hydrodynamic regime[J]. Physical Review Letters, 2023, 130(21):212303.
[98] AmbruşV E, Schlichting S, Werthmann C. Establishing the range of applicability of hydrodynamics in high-energy collisions[J]. Physical Review Letters, 2023, 130(21):212302.
[99] Pradeep M S, Stephanov M. Maximum entropy freezeout of hydrodynamic fluctuations[J]. Physical Review Letters, 2023, 130(21):212302.
[100] Agostini M, Alexander A, Araujo G R, et al. Final results of GERDA on the two-neutrino double-β decay half-life of 76Ge[J]. Physical Review Letters, 2023, 131(14):142501.
[101] Arnquist I J, Avignone F T, Barabash A S, et al. Constraints on the decay of 180mTa[J]. Physical Review Letters, 2023, 131(15):152501.
[102] Cai T, Moore M L, Olivier A, et al. Measurement of the axial vector form factor from antineutrino-proton scattering[J]. Nature, 2023, 614(7946):48-53.
[103] Esfahani A A, Böser S, Buzinsky N A, et al. Tritium beta spectrum measurement and neutrino mass limit from cyclotron radiation emission spectroscopy[J]. Physical Review Letters, 2023, 131(10):102502.
[104] Abe S, Asami S, Eizuka M S, et al. Search for the majorana nature of neutrinos in the inverted mass ordering region with KamLAND-Zen[J]. Physical Review Letters, 2023, 130(5):051801.
[105] Arnquist I J, Avignone F T, Barabash A S, et al. Final result of the majorana demonstrator's search for neutrinoless double-β decay in 76Ge[J]. Physical Review Letters, 2023, 130(6):062501.
[106] Augier C, Barabash A S, Bellini F, et al. Measurement of the 2νββ decay rate and spectral shape of 100Mo from the CUPID-Mo experiment[J]. Physical Review Letters,2023, 131(16):162501.
[107] Zhou X, Wang M, Zhang Y H, et al. Mass measurements show slowdown of rapid proton capture process at waiting-point nucleus 64Ge[J]. Nature Physics, 2023,19(8):1-7.
[108] Wang M, Zhang Y H, Zhou X, et al. Mass measurement of upper fp-Shell N=Z-2 and N=Z-1 nuclei and the importance of three-nucleon force along the N=Z line[J]. Physical Review Letters, 2023, 130(19):192501.
[109] Walker P M. Double-up for single-ion masses[J]. Nuclear Science and Techniques, 2023, 34(7):104.
[110] Jayatissa H, Avila M L, Rehm K E, et al. Study of the 22Mg waiting point relevant for X-Ray burst nucleosynthesis via the 22 Mg(α, p)25Al reaction[J]. Physical Review Letters, 2023, 131(11):112701.
[111] Ma Y G, Fang D Q, Sun X Y, et al. Different mechanism of two-proton emission from proton-rich nuclei 23Al and 22Mg[J]. Physics Letters B, 2015, 9(743):306-309.
[112] Fang D Q, Ma Y G, Sun X Y, et al. Proton-proton correlations in distinguishing the two-proton emission mechanism of 23Al and 22Mg[J]. Physical Review C,2016, 94(4):044621.
[113] Browne J, Chipps K A, Schmidt K, et al. First direct measurement constraining the 34Ar(α, p)37K reaction cross section for mixed hydrogen and helium burning in accreting neutron stars[J]. Physical Review Letters,2023, 130(21):212701.
[114] Kajino T. Underground laboratory JUNA shedding light on stellar nucleosynthesis[J]. Nuclear Science and Techniques, 2023, 34:42.
[115] Wang L H, Su J, Shen Y P, et al. Measurement of the 18O(α, γ)22Ne reaction rate at JUNA and its impact on probing the origin of SiC grains[J]. Physical Review Letters, 2023, 130(9):092701.
[116] Skowronski J, Boeltzig A, Ciani G F, et al. Proton-capture rates on carbon isotopes and their impact on the astrophysical 12C=13C ratio[J]. Physical Review Letters,2023, 131(16):162701.
[117] Fougères C, De Oliveira Santos F, JoséJ, et al. Search for 22Na in novae supported by a novel method for measuring femtosecond nuclear lifetimes[J]. Nature Communications, 2023, 14:4536.
[118] Tollefson J, Gibney E. Nuclear-fusion lab achieves'Ignition':What does it mean?[J]. Nature, 2022, 612(7941):597.
[119] Lu Z W, Guo L, Li Z Z, et al. Manipulation of giant multipole resonances via vortex γ photons[J]. Physical Review Letters, 2023, 131(20):202502.
[120] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital Angular momentum of light and the transformation of laguerre-gaussian laser modes[J]. Physical Review A, 1992, 45(11):8185.
[121] Li Z Z, Niu Y F, ColòG. Toward a unified description of isoscalar giant monopole resonances in a self-consistent quasiparticle-vibration coupling approach[J]. Physical Review Letters, 2023, 131(8):082501.
[122] ColòG. A novel way to study the nuclear collective excitations[J]. Nuclear Science and Techniques, 2023, 34(12):111-113.
[123] Kraemer S, Moens J, Athanasakis-Kaklamanakis M, et al. Observation of the radiative decay of the 229Th nuclear clock isomer[J]. Nature, 2023, 617(7962):706-710.
[124] Shvyd'ko Y, Röhlsberger R, Kocharovskaya O, et al.Resonant X-ray excitation of the nuclear clock isomer 45Sc[J]. Nature, 2023, 622(7983):471-475.
[125] Qi J T, Zhang H X, Wang X. Isomeric excitation of 229Th in Laser-heated clusters[J]. Physical Review Letters, 2023, 130(11):112501.
[126] Li L, Li Z, Wang C, et al. Scheme for the excitation of thorium-229 nuclei based on electronic bridge excitation[J]. Nuclear Science and Techniques, 2023, 34(2):90-99.
[127] Pálffy A. Photon lights a path towards a nuclear clock[J]. Nature, 2023, 617(7962):678-679.
[128] Anderson E K, Baker C J, Bertsche W, et al. Observation of the effect of gravity on the motion of antimatter[J]. Nature, 2023, 621(7980):716-722.
[129] Nishi T, Itahashi K, Ahn D, et al. Chiral symmetry restoration at high matter density observed in pionic atoms[J]. Nature Physics, 2023, 19(6):788-793.
[130] Vilenkin A. Equilibrium parity violating current in a magnetic field[J]. Physical Review D, 1980, 22(12):3080-3084.
[131] Fukushima K, Kharzeev D E, Warringa H J. Chiral magnetic effect[J]. Physical Review D, 2008, 78(7):074033.
[132] Kharzeev D E, Liao J, Voloshin S A, et al. Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report[J]. Progress in Particle and Nuclear Physics, 2016, 88:1-28.
[133] Hattori K, Huang X G. Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions[J]. Nuclear Science and Techniques, 2017, 28(2):1-29.
[134] Kamada K, Yamamoto N, Yang D L. Chiral effects in astrophysics and cosmology[J]. Progress in Particle and Nuclear Physics, 2023, 129:104016.
[135] Armitage N P, Mele E J, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids[J]. Reviews of Modern Physics, 2018, 90(1):015001.
[136] Yamamoto N, Yang D L. Effective chiral magnetic effect from neutrino radiation[J]. Physical Review Letters,2023, 131(1):012701.
文章导航

/