专题:农业科技创新

生物质能源利用研究进展

  • 贾意久 ,
  • 石雅丽
展开
  • 内蒙古工业大学化工学院,呼和浩特 010051
贾意久,硕士研究生,研究方向为产纤维素酶微生物,电子信箱:3234180298@qq.com

收稿日期: 2022-07-25

  修回日期: 2023-01-26

  网络出版日期: 2023-09-08

基金资助

内蒙古自治区自然科学基金项目(2020MS03030)

The research progress of biomass energy utilization

  • JIA Yijiu ,
  • SHI Yali
Expand
  • College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

Received date: 2022-07-25

  Revised date: 2023-01-26

  Online published: 2023-09-08

摘要

围绕生物质能源原料的来源、原料的处理、生物质转化技术、生物质能源的应用、生物质能源的发展前景5个方面,讨论了生物质能源利用的现状和存在的不足。虽然生物质能源研究蓬勃发展,但是仍有一些地方可以改进:在原料产地就近建厂,降低原料成本;微藻不占用土地,是一种可行原料;原料预处理需要综合考虑效益与成本;对于生物质转化技术的选择,生化与热化学转化相结合可能是一个好的方案;生物质能源的应用方面可以进行生物精炼,提高生产效能,此外,生物燃料电池具有巨大发展潜力。

本文引用格式

贾意久 , 石雅丽 . 生物质能源利用研究进展[J]. 科技导报, 2023 , 41(16) : 55 -75 . DOI: 10.3981/j.issn.1000-7857.2023.16.005

Abstract

With the increasingly serious energy crisis, the development of renewable clean energy as a substitute for fossil energy has always been the focus of scientific research. Biomass energy is the most promising alternative to fossil energy. This paper discusses the current situation and shortcomings of biomass energy utilization in five aspects: the source of biomass energy raw materials, the treatment of raw materials, biomass conversion technology, the application of biomass energy, and the development prospect of biomass energy. Although biomass energy research is booming, there are still some areas where improvements can be made: plants can be built close to the source of the feedstock to reduce feedstock costs; microalgae do not take up land and are a viable feedstock; feedstock pre-treatment needs to balance benefits and costs; for the choice of biomass conversion technology, a combination of biochemical and thermochemical conversion may be a good option; the application side of biomass energy can be biorefined to improve production efficiency, in addition, biofuel cells have great potential for development. This study aims to provide a theoretical basis and reference for the optimisation of existing technologies and future research and development of biomass energy.

参考文献

[1] Shi Y, Li S, Liu X. China's bioenergy industry development roadmap[J]. Engineering Sciences, 2009, 7(2): 7.
[2] Lin C Y. Cost-benefit evaluation of using biodiesel as an alternative fuel for fishing boats in Taiwan[J]. Marine Policy, 2012, 36(1): 103-107.
[3] Ge S, Wu Y, Peng W, et al. High-pressure CO2 hydrothermal pretreatment of peanut shells for enzymatic hydrolysis conversion into glucose[J]. Chemical Engineering Journal, 2020, 385: 123949.
[4] Brancourt-Hulmel M, Demay C, Rosiau E, et al. Miscanthus Genetics and Agronomy for Bioenergy Feedstock[J]. Cellulosic Energy Cropping Systems, 2014, 9781119991946: 43-73.
[5] Kadam K L, Forrest L H, Jacobson W A. Rice straw as a lignocellulosic resource: Collection, processing, transportation, and environmental aspects[J]. Biomass & Bioenergy, 2000, 18(5): 369-389.
[6] Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: A review[J]. Renewable and Sustainable Energy Reviews, 2009, 14(1): 217-232
[7] Lin C Y, Lu C. Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 136: 110445.
[8] Rodionova M V, Poudyal R S, Tiwari I, et al. Biofuel production: Challenges and opportunities[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8450-8461.
[9] Liao J J, Latif N, Trache D, et al. Current advancement on the isolation, characterization and application of lignin[J]. International Journal of Biological Macromolecules, 2020, 162: 985-1024.
[10] Zheng Y, Zhao J, Xu F, et al. Pretreatment of lignocellulosic biomass for enhanced biogas production[J]. Progress in Energy & Combustion Science, 2014, 42(1): 35-53.
[11] Zeng G, He S, Li Y, et al. Pretreatment technology of lignocellulose[J]. E3S Web of Conferences, 2021, 271(27): 04010.
[12] Demirbas A. Relationships between lignin contents and heating values of biomass[J]. Energy Conversion & Management, 2001, 42(2): 183-188.
[13] Usmani Z, Sharma M, Gupta P, et al. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion[J]. Bioresour Technology, 2020, 304: 123003.
[14] González-García P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1393-414.
[15] Nascimento L, Filho G, Lima R, et al. Activated carbon obtained from amazonian biomass tailings (acai seed): Modification, characterization, and use for removal of metal ions from water[J]. Journal of Environmental Management, 2020, 270: 110868.
[16] Basafa M, Hawboldt K. A review on sources and extraction of phenolic compounds as precursors for bio-based phenolic resins[J]. Biomass Conversion and Biorefinery, 2021, 13, 4463-4475.
[17] Din N A S, Lim S J, Maskat M Y, et al. Bioconversionof coconut husk fibre through biorefinery process of alkaline pretreatment and enzymatic hydrolysis[J]. Biomass Conversion and Biorefinery, 2021, 11(3): 815-826.
[18] Sharma B, Larroche C, Dussap C G. Comprehensive assessment of 2G bioethanol production[J]. Bioresour Technol, 2020, 313: 123630.
[19] Logeswaran J, Shamsuddin A H, Silitonga A S, et al. Prospect of using rice straw for power generation: a review[J]. Environmental Science and Pollution Research, 2020, 27: 25956-25969.
[20] Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production[J]. Renewable and Sustainable Energy Reviews, 2012, 16: 1462-1476.
[21] Muhammad S A B, James O T. Catalytic pyrolysis of rice husk for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 362-368.
[22] Rahman I A. Spherical gel particles from rice husk by chemical digestion[J]. Journal of Materials Chemistry, 1992, 2: 1107-1108.
[23] Hassan H, Lim J K, Hameed B H. Recent progress on biomass copyrolysis conversion into high-quality bio-oil [J]. Bioresource Technology, 2016, 221: 645-655.
[24] Tian S Q, Zhao R Y, Chen Z C. Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials[J]. Renewable & Sustainable Energy Reviews, 2018, 91: 483-489.
[25] Carvalheiro F, Duarte L C, Girio F M. Hemicellulose biorefineries: A review on biomass pretreatments[J]. Journal of Scientific and Industrial Research, 2008, 67(11): 849-864.
[26] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: A review[J]. Cheminform, 2003, 83(1): 1-11.
[27] Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review[J]. International Journal of Molecular Sciences, 2008, 9(9): 1621-1651.
[28] Inoue H, Yano S, Endo T, et al. Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus[J]. Biotechnology for Biofuels, 2008, 1(1): 2.
[29] Mais U, Esteghlalian A R, Saddler J N, et al. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling[J]. Applied Biochemistry and Biotechnology, 2002, 98-100(1): 815-832.
[30] 梁江华 . 超声波辅助生物催化降解木质纤维素制燃料乙醇的研究[D]. 天津: 天津大学, 2007.
[31] Rolz C. Ultrasound effect on enzymatic saccharification[J]. Biotechnology Letters, 1986, 8(2): 131-136.
[32] Yachmenev V, Condon B, Klasson T, et al. Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound[J]. Journal of Biobased Materials and Bioenergy, 2009, 3(1): 25-31.
[33] Pan X, Xie D, Gilkes N, et al. Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content[J]. Applied Biochemistry and Biotechnology, 2005, 124(1-3): 1069-1069.
[34] Xia M, Peng M, Xue D, et al. Development of optimal steam explosion pretreatment and highly effective cell factory for bioconversion of grain vinegar residue to butanol[J]. Biotechnology for Biofuels, 2020, 13(1): 111.
[35] Jacquet N, Maniet G, Vanderghem C, et al. Application of steam explosion as pretreatment on lignocellulosic material: A review[J]. Industrial & Engineering Chemistry Research, 2015, 54(10): 179-199.
[36] Sridar V. Microwave radiation as a catalyst for chemical reactions[J]. Current Science, 1998, 74(5): 446-450.
[37] Md. Suruzzaman. 微波辅助酸处理生物质的快速热解研究[D]. 北京: 清华大学, 2014.
[38] Shengdong Z, Yuanxin W, Qiming C, et al. Dissolution of cellulose with ionic liquids and its application: A mini-review[J]. Green Chemistry, 2006, 8(4): 325-327.
[39] Saha B C, Biswas A, Cotta M A. Microwave pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol[J]. Journal of Biobased Materials and Bioenergy, 2008, 2(3): 210-217.
[40] Sanette M, Busiswa N, Idan C, et al. Fuel ethanol production from sweet sorghum bagasse using microwave irradiation[J]. Biomass and Bioenergy, 2014, 65: 145-150.
[41] Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review[J]. International Journal of Molecular Sciences, 2008, 9(9): 1621-1651.
[42] Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005, 96(6): 673-686.
[43] Li L, Chen C, Zhang R, et al. Pretreatment of corn stover for methane production with the combination of potassium hydroxide and calcium hydroxide[J]. Energy & Fuels, 2015, 29(9): 5841-5846.
[44] Satlewal A, Agrawal R, Bhagia S, et al. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties[J]. Biofuels Bioproducts and Biorefining, 2018, 12(1): 83-107.
[45] Tang J, Chen K, Huang F, et al. Characterization of the pretreatment liquor of biomass from the perennial grass, Eulaliopsis binata, for the production of dissolving pulp[J]. Bioresource Technology, 2013, 129(Complete): 548-552.
[46] Bondesson P M, Galbe M, Zacchi G. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid[J]. Biotechnology for Biofuels, 2013, 6(1): 11.
[47] Garcia-Cubero M T, Gonzalez-Benito G, Indacoechea I, et al. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw[J]. Bioresource Technology, 2009, 99(4): 1608-1613.
[48] Miura T, Lee S H, Inoue S, et al. Combined pretreatment using ozonolysis and wet-disk milling to improve enzymatic saccharification of Japanese cedar[J]. Bioresource Technology, 2012, 126: 182-186.
[49] Zhao H, Jones C I L, Baker G A, et al. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis[J]. Journal of Biotechnology, 2009, 139(1): 47-54.
[50] Sarkanen K V. Acid-catalyzed delignification of lignocellulosics in organic solvents[J]. Progress in Biomass Con·version, 1980, 2: 127-144.
[51] Sun F, Chen H. Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw[J]. Bioresource Technology, 2008, 99(13): 5474-5479.
[52] Geng A, Xin F, Ip J Y. Ethanol production from horticultural waste treated by a modified organosolv method[J]. Bioresource Technology, 2012, 104: 715-721.
[53] Hideno A, Kawashima A, Endo T, et al. Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress(Chamaecyparis obtusa)by exposing nanofibers on the surface[J]. Bioresour Technology, 2013, 132: 64-70.
[54] Liu R, Zhang J, Sun S, et al. Dissolution and recovery of cellulose from pine wood bits in ionic liquids and a co-solvent component mixed system[J]. Journal of Engineered Fibers and Fabrics, 2019, 1: 14.
[55] 毕志豪. 木质纤维素结构的绿色解聚和木质素、纤维素的提取与转化[D]. 合肥: 中国科学技术大学, 2019.
[56] Hayes D. An examination of biorefining processes, catalysts and challenges[J]. Catalysis Today, 2009, 145(1-2): 138-151
[57] Joglekar H G, Rahman I, Kulkarni B D, et al. The path ahead for ionic liquids[J]. Chemical Engineering & Technology, 2007, 30(7): 819-828.
[58] Xie X, Anderson A B, Wran L J, et al. Characterization of cellulose-degrading microbiota from the eastern subterranean termite and soil[J]. F1000 Research, 2017, 6: 2082.
[59] Juturu V, Wu J C. Microbial cellulases: Engineering, production and applications[J]. Renewable & Sustainable Energy Reviews, 2014, 33: 188-203
[60] Cantarel B L, Coutinho P M, Corinne R, et al. The carbohydrate-active enzymes database(CAZy): An expert resource for Glycogenomics[J]. Nucleic Acids Research, 2009, 3: 233-238.
[61] Kuhad R C, Gupta R, Singh A. Microbial cellulases and their industrial applications[J]. Enzyme Research, 2011(1): 1-10.
[62] Zabed H, Sahu J N, Boyce A N, et al. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches[J]. Renewable & Sustainable Energy Reviews, 2016, 66: 751-774.
[63] Maurya D P, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol[J]. Springer Open Choice, 2015, 5(5): 597-609.
[64] Fahmy T Y A, Fahmy Y, Mobarak F, et al. Biomass pyrolysis: Past, present, and future[J]. Environment, Development and Sustainability, 2020, 22: 17-32.
[65] Kan T, Strezov V, Evans T. Catalytic pyrolysis of coffee grounds using nicu-impregnated catalysts[J]. Energy & Fuels, 2014, 28: 228-235.
[66] Zhang Y N, Zhao W K, Li B X, et al. Microwave-assisted pyrolysis of biomass for Bio-Oil production: A review of the operation parameters[J]. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140(4): 1-6.
[67] Li R, Zeng K, Soria A, et al. Product distribution from solar pyrolysis of agricultural and forestry biomass residues[J]. Renewable Energy, 2016, 89: 27-35.
[68] Francois G. A review on plasma techeologies applied to thermo-chemical biomass conversion[C]//Biorefinery I: Chemicals and Materials from Thermo-Chemical Biomass Conversion and Related Processes. Chania: International conference on biorefinery I, 2015: 69.
[69] Huang X Y, Cheng B G, Chen F Q, et al. Reaction pathways of hemicellulose and mechanism of biomass pyrolysis in hydrogen plasma: A density functional theory study[J]. Renewable Energy, 2016, 96: 490-497.
[70] Sikarwar V S, Zhao M, Clough P, et al. An overview of advances in biomass gasification[J]. Energy & Environmental Science, 2016, 9(10): 2939-2977.
[71] Kivisaari T, Bjornbom P, Sylwan C, et al. The feasibility of a coal gasifier combined with a high-temperature fuel cell[J]. Chemical Engineering Journal, 2004, 100(1-3): 167-180.
[72] Gollakota A R K, Kishore N, Nanda S, et al. A review on hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1378-1392.
[73] Yang L X, Nazari L, Yuan Z S, et al. Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production[J]. Biomass and Bioenergy, 2016, 86: 191-198.
[74] Karim A M, Su Y, Sun J M, et al. A comparative study between Co and Rh for steam reforming of ethanol[J]. Applied Catalysis B: Environmental, 2010, 96(3-4): 441-448.
[75] Azizan M T, Aqsha A, Ameen M, et al. Catalytic reforming of oxygenated hydrocarbons for the hydrogen production: an outlook[J]. Biomass Conversion and Biorefinery, 2020, doi: 10.1007/s13399-020-01081-6.
[76] Li S H, Liu S Q, Colmenares J C, et al. A sustainable approach for lignin valorization by heterogeneous photocatalysis[J]. Green Chemistry, 2016, 18(3): 594-607.
[77] Liu N, Yuan Z S, Wang C W, et al. The role of CeO2-ZrO2 as support in the ZnO-ZnCr2O4 catalysts for autothermal reforming of methanol[J]. Fuel Process Technol, 2008, 89(6): 574-581.
[78] Luis M G. Renewable hydrogen technologies: Production, purification, storage, applications and safety[M]. Amsterdam: Elsevier Science, 2013.
[79] 潘伟, 孟俊光, 张居兵, 等 . Ni/氮掺杂碳催化剂的制备及其催化甲烷干重整实验研究[J]. 天然气化工—C1化学与化工, 2022, 47(2): 46-53.
[80] Marciukaitis K V, Perednis M, et al. Analysis of biodegradable waste use for energy generation in Lithuania[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 559-567.
[81] Wang X J, Yang G H, Feng Y Z, et al. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw[J]. Bioresource Technology, 2012, 120: 78-83.
[82] El-Mashad H M, Zeeman G, van Loon W K P, et al. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure[J]. Bioresource Technology, 2004, 95(2): 191-201.
[83] Sen B, Aravind J, Kanmani P, et al. State of the art and future concept of food waste fermentation to bioenergy[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 547-557.
[84] Vohra M, Manwar J, Manmode R, et al. Bioethanol production: Feedstock and current technologies[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 573-584.
[85] Manish S, Banerjee R. Comparison of biohydrogen production processes[J]. International Journal of Hydrogen Energy, 2008, 33(1): 279-286.
[86] Łukajtis R, Hołowacz I, Kucharska K, et al. Hydrogen production from biomass using dark fermentation[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 665-694.
[87] Basar U, Gökhan K, Meral Y, et al. Hydrogen production via photofermentation[J]. State of the Art and Progress in Production of Biohydrogen, 2012, 12: 54-77.
[88] Alves V D, Amorim V, Wheals A E, et al. Fuel ethanol after 25 years[J]. Trends in Biotechnology, 1999, 17(12): 482-487.
[89] Zaldivar J, Nielson J, Olsson l. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration[J]. Applied microbiology and biotechnology, 2001, 56, 17-34.
[90] Ojeda E K. Sánchez M. Halwagi E, et al. Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: Comparison of SHF, SSF and SSCF pathways[J]. Chemical Engineering Journal, 2011, 176-177: 195-201.
[91] Carere C R, Sparling R, Cicek N, et al. Third generation biofuels via direct cellulose fermentation[J]. International Journal of Molecular Sciences, 2008, 9(7): 1342-1360.
[92] Susmozas A, Martin-Sampedro R, Ibarra D et al. Process strategies for the transition of 1G to advanced bioethanol production[J]. Processes, 2020, 8(10): 1310.
[93] Lynd L R, Weimer P J, Zyl W, et al. Microbial cellulose utilization: fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506-77.
[94] Mohanty S K. Bioethanol production from corn and wheat: Food, fuel, and future[J]. Bioethanol Production from Food Crops, 2019, 15: 45-59.
[95] Philippidis G, Bartelings H, Helming J, et al. The good, the bad and the uncertain: Bioenergy use in the European Union[J]. Energies, 2018, 11(10): 2703.
[96] Mabee W E, Saddler J N. Bioethanol from lignocellulosics: Status and perspectives in Canada[J]. Bioresource Technology, 2010, 101(13): 4806-4813.
[97] 褚大旺, 辛莹莹, 赵晨. 玉米秸秆连续氢解制备生物乙醇 [J]. Chinese Journal of Catalysis, 2021, 42(5): 844-854.
[98] Sharma B, Larroche C, Dussap C G. Comprehensive assessment of 2G bioethanol production[J]. Bioresource Technology, 2020, 313: 123630.
[99] Darren G, Abdelrahman Z, Oyenike M, et al. A brief review on bioethanol production using marine biomass, marine microorganism and seawater[J]. Current Opinion in Green & Sustainable Chemistry, 2018, 14: 53-59.
[100] Chandra R, Takeuchi H, Hasegawa T, et al. Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments[J]. Energy, 2012, 43(1): 273-282.
[101] Petersson A, Wellinger A. Biogas upgrading technologies-developments and innovations[J]. IEA Bioenergy, 2009, 20: 1-19.
[102] Kadam R, Panwar N L. Recent advancement in biogas enrichment and its applications[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 892-903.
[103] Baena-Moreno F M, Rodriguez-Galan M, Vega F, etal. Review: Recent advances in biogas purifying technologies[J]. International Journal of Green Energy, 2019, 16(5): 401-412.
[104] Ryan F, Caulfield B. Examining the benefits of using bio-CNG in urban bus operations[J]. Transportation Research: Part D, 2010, 15(6): 362-365.
[105] Shah D R, Nagarsheth H J, Pradeep A. Purification of biogas using chemical scrubbing and application of purified biogas as fuel for automotive engines[J]. Research Journal of Recent Sciences, 2016, 5: 1-7.
[106] Morgan Jr H M, Xie W, Liang J, et al. A techno-economic evaluation of anaerobic biogas producing systems in developing countries[J]. Bioresource Technology, 2018, 250: 910-921.
[107] Kolekar A H, Singh S, Ganesh A. Experimental analysis of effective combustion heat release rate for improving the performance of synthetic biogas-diesel dual-fuel engine[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 12: 1-17.
[108] Kaur M, Ali A. Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from karanja and jatropha oils[J]. Renewable Energy, 2011, 36(11): 2866-2871.
[109] Leng L, Pei H, Yuan X, et al. Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges[J]. Energy, 2018, 153(15): 1061-1072.
[110] Baskar G, Aiswarya R. Trends in catalytic production of biodiesel from various feedstocks[J]. Renewable & Sustainable Energy Reviews, 2016, 57: 496-504.
[111] Kumar P, Sharma D, Soni S L, et al. Characterization of the nonroad modified diesel engine using a novel entropy-vikor approach: Experimental investigation and numerical simulation[J]. Journal of Energy Resources Technology, 2019, 141(8): 082208.
[112] Shameer P M, Ramesh K, Sakthivel R, et al. Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review [J]. Renewable & Sustainable Energy Reviews, 2017, 67: 1267-1281.
[113] Ayhan D. New liquid biofuels from vegetable oils via catalytic pyrolysis[J]. Energy Education Science and Technology, 2008, 21(1-2): 1-59.
[114] Zhu B, Chen G, Cao X, et al. Molecular characterization of CO2 sequestration and assimilation in microalgae and its biotechnological applications[J]. Bioresource Technology, 2017, 244(2): 1207-1215.
[115] Abdullah B, Muhammad S S, Shokravi Z, et al. Fourth generation biofuel: A review on risks and mitigation strategies[J]. Renewable & Sustainable Energy Reviews, 2019, 107: 37-50.
[116] Son T N, Shih-I K, et al. Recent developments on genetic engineering of microalgae for biofuels and bio based chemicals[J]. Biotechnology Journal, 2017, 12(10): 1700015.
[117] Lin W R, Tan S I, Hsiang C C, et al. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery[J]. Bioresource Technology, 2019, 291: 121932.
[118] Venkata M S. Microbial Electrochemical Technology[M]. Amsterdam: Elsevier, 2018.
[119] Ramírez-Vargas C A, Prado A, Arias C A, et al. Microbial electrochemical technologies for wastewater treatment: Principles and evolution from microbial fuel cells to bioelectrochemical-based constructed wetlands[J]. Water, 2018, 10(9): 1128.
[120] Leech D, Kavanagh P, Schuhmann W, et al. Enzymatic fuel cells: Recent progress[J]. Electrochimica Acta, 2012, 84: 223-234.
[121] O'Hayre R P. Fuel cells for electrochemical energy conversion[J]. The European Physical Journal Conferences, 2018, 189: 00011.
[122] Wang X, Shi Y, Zhuang S, et al. Enhancement of electricity generation in single chamber microbial fuel cell using binuclear-cobalt-phthalocyanine and cerium oxide co-supported on ordered mesoporous carbon as cathode catalyst[J]. Journal of the Electrochemical Society, 2019, 166(2): 9-17.
[123] Wang F T, Wang Y H, Xu J, et al. A high-energy sandwich-type self-powered biosensor based on DNA bioconjugates and a nitrogen doped ultra-thin carbon shell[J]. Journal of Materials Chemistry B, 2020, 8(7): 1389-1395.
[124] Zhou M, Zhou N, Kuralay F, et al. A self-powered "sense-act-treat" system that is based on a biofuel cell and controlled by boolean logic[J]. Angewandte Chemie International Edition, 2012, 51(11): 2686-2689.
[125] Halámek J, Tam T K, Chinnapareddy S, et al. Keypad lock security system based on immune-affinity recognition integrated with a switchable biofuel cell[J]. The Journal of Physical Chemistry Letters, 2010, 1(6): 973-977.
[126] da Silva V T, Mozer T S, da Silva C A. Hydrogen: Trends, production and characterization of the main process worldwide[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2018-2033.
[127] Vasilakos N P, Austgen D M. Hydrogen-donor solvents in biomass liquefaction[J]. Industrial and Engineering Chemistry Process Design and Development, 1985, 24(2): 304-311.
[128] Tigabwa A, Ahmad Y, Murni M, et al. Mathematical and computational approaches for design of biomassgasification for hydrogen production: A review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2304-2315.
[129] Arregi A, Amutio M, Lopez G, et al. Evaluation of thermochemical routes for hydrogen production from biomass: A review[J]. Energy Conversion and Management, 2018, 165: 696-719.
[130] Yang L, Ge X. Chapter three-biogas and syngas upgrading. Advances in bioenergy[M]. Amsterdam: Elsevier, 2016: 125-188.
[131] Osman A I, Mehta N, Elgarahy A, et al. Conversion of biomass to biofuels and life cycle assessment: A review[J]. Environmental Chemistry Letters, 2021, 19(6): 4075-4118.
[132] Singh N, B Kumar A, Rai S. Potential production of bioenergy from biomass in an Indian perspective[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 65-78.
[133] Christian B, Esther L F. Commercialization of low carbon methanol[J]. ATZextra Worldwide, 2016, 21(11): 22-25.
[134] Osman A, Abu D, Jehad K. Investigation of eta-Al2O3 catalyst for dimethyl ether production[J]. Catalysis Letters, 2018, 148(4): 1236-1245.
[135] Osman A, Abu D, Jehad K, et al. Silver-modified eta-Al2O3 catalyst for DME production[J]. Journal of Physical Chemistry C, 2017, 121(45): 25018-25032.
[136] Yang J, Xin Z, He Q, et al. An overview on performance characteristics of bio-jet fuels[J]. FUEL, 2019, 237: 916-936.
[137] Hileman J, Stratton R W, Donohoo P E. Energy content and alternative jet fuel viability[J]. Journal of Propulsion and Power, 2010, 26(6): 1184-1195.
[138] Nygren E, Aleklett K l, Hook M. Aviation fuel and future oil production scenarios[J]. Energy Policy, 2009, 37(10): 4003-4010.
[139] Fargione J, Hill J, Tilman D, et al. Land clearing and the biofuel carbon debt[J]. Science, 2008, 319(5867): 1235-1238.
[140] Moore R H, Thornhill K L, Weinzierl B, et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions[J]. Nature, 2017, 543(7645): 411-415.
[141] Tran S, Brown A, Olfert J S. Comparison of particle number emissions from in-flight aircraft fueled with Jet A1, JP-5 and an alcohol-to-Jet fuel blend[J]. Energy & Fuels, 2020, 34(6): 7218-7222.
[142] Cheng H, Wang L. Lignocelluloses feedstock biorefinery as petrorefinery substitutes[M]//Biomass Now-Sustainable Growth and Use. Intech: Rigeta Croatia, 2013: 347-388.
[143] Pant D, Misra S, Nizami A, et al. Towards the development of a biobased economy in Europe and India[J]. Critical Reviews in Biotechnology, 2019, 39(6): 779-799.
[144] Ozdenkci K, de B C, Muddassar H R, et al. A novel biorefinery integration concept for lignocellulosic biomass[J]. Energy Conversion and Management, 2017, 149: 974-987.
[145] Maity S K. Opportunities, recent trends and challenges of integrated biorefinery: Part II[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 1446-1466.
[146] Paone E, Tabanelli T, Mauriello F. The rise of lignin biorefinery[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 24: 1-6.
[147] Kim J W, Kim K S, Lee J S, et al. Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid[J]. Bioresource Technology, 2011, 102(19): 8992-8999.
[148] Geraint E, Claire S. Biomass to liquids technology[M]. Amsterdam: Elsevier, 2012: 155-204.
[149] Damartzis T, Zabaniotou A. Thermochemical conversion of biomass to second generation biofuels through integrated process design: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 366-378.
[150] Geun-Cheol G, In-Seop C, Byung H K, et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell[J]. Biosensors and Bioelectronics, 2003, 18(4): 327-334.
文章导航

/