专稿

质量4.0:概念、基础架构及关键技术

  • 刘虎沉 ,
  • 王鹤鸣 ,
  • 施华 ,
  • 尤建新
展开
  • 1. 同济大学经济与管理学院,上海 200092
    2. 上海电机学院材料学院,上海 201306
刘虎沉,教授,研究方向为质量工程与可靠性管理,电子信箱:huchenliu@tongji.edu.cn

收稿日期: 2023-02-27

  修回日期: 2023-03-31

  网络出版日期: 2023-06-29

基金资助

国家社会科学基金重大项目(21ZDA024)

Quality 4.0: Concepts, basic architecture, and key technologies

  • LIU Huchen ,
  • WANG Heming ,
  • SHI Hua ,
  • YOU Jianxin
Expand
  • 1. School of Economics and Management, Tongji University, Shanghai 200092, China
    2. School of Materials, Shanghai Dianji University, Shanghai 201306, China

Received date: 2023-02-27

  Revised date: 2023-03-31

  Online published: 2023-06-29

摘要

通过明确质量4.0定义、特征、目标,完善了质量4.0概念,设计了质量4.0基础架构,讨论了工业大数据、数字孪生、机器学习等8类关键技术及其支撑质量4.0的具体方式,分析了中国制造业在质量4.0应用方面存在的问题并给出具体对策。

本文引用格式

刘虎沉 , 王鹤鸣 , 施华 , 尤建新 . 质量4.0:概念、基础架构及关键技术[J]. 科技导报, 2023 , 41(11) : 6 -18 . DOI: 10.3981/j.issn.1000-7857.2023.11.001

Abstract

Quality 4.0 is an emerging quality management concept, which has been increasingly appreciated due to intensification of competition, continually changing customer requirements, and technological evolution. It deals with aligning the practices of quality management with the emergent capabilities of Industry 4.0 to improve cost, time and efficiency as well as increase product quality. As the future of quality, Quality 4.0 has become a potential choice for enterprises and has attracted increasing attention in recent years. In the literature, many studies have been conducted to investigate Quality 4.0 from different perspectives. They provide valuable insights and interesting research suggestions concerning Quality 4.0. However, the current researches on Quality 4.0 are insufficient in terms of basic concept, architecture design and key technologies. Therefore, this paper tries to improve the concept of Quality 4.0 by clarifying the definition, features and goals of Quality 4.0 based on a comprehensive review of current researches and practices. Then, a basic architecture of Quality 4.0 is presented by including physical layer, edge layer, analysis layer and decision layer. Besides, eight key technologies, i. e., industrial big data, digital twins, machine learning, machine vision, visualization technology, optimization techniques, connect technology, and collaborative technology, are identified to support the implementation of Quality 4.0. Finally, the problems of Quality 4.0 implementation in the Chinese manufacturing industry and the possible solutions to address them are discussed.

参考文献

[1] Lasi H, Fettke P, Kemper H G, et al. Industry 4.0[J]. Business & Information Systems Engineering, 2014, 6(4): 239-242.
[2] 温小琴, 胡奇英 . 基于质量意识和工艺创新的供应链质量决策[J]. 管理科学学报, 2018, 21(2): 80-90.
[3] 周济. 智能制造——“中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26(17): 2273-2284.
[4] 延建林, 孔德婧. 解析“工业互联网”与“工业4.0”及其对中国制造业发展的启示[J]. 中国工程科学, 2015, 17(7): 141-144.
[5] 李金华 . 德国“工业 4.0”与“中国制造 2025”的比较及启示[J]. 中国地质大学学报(社会科学版), 2015, 15(5): 71-79.
[6] Jacob D. Quality 4.0 impact and strategy handbook[M]. Cambrige: LNS Research, 2017.
[7] Kumar L, Hossain N U I, Fazio S A, et al. A data driven decision model for assessing the enablers of quality dimensions: Context of industry 4.0[J]. Cirp Journal of Manufacturing Science and Technology, 2021, 35: 896-910.
[8] Christou I T, Kefalakis N, Soldatos J K, et al. End-to-end industrial IoT platform for Quality 4.0 applications[J]. Computers in Industry, 2022, 137: 103591.
[9] Escobar C A, McGovern M E, Morales-Menendez R. Quality 4.0: A review of big data challenges in manufacturing[J]. Journal of Intelligent Manufacturing, 2021, 32(8): 2319-2334.
[10] Chiarini A, Kumar M. What is Quality 4.0? An exploratory sequential mixed methods study of Italian manu-facturing companies[J]. International Journal of Production Research, 2022, 60(16): 4890-4910.
[11] Sader S, Husti I, Daroczi M. A review of quality 4.0: Definitions, features, technologies, applications, and cha-llenges[J]. Total Quality Management & Business Excellence, 2021, 33(9/10): 1164-1182.
[12] 曹裕, 李青松, 胡韩莉. 供应链产品质量检查策略的比较研究[J]. 系统工程理论与实践, 2019, 39(1): 111-125.
[13] 成国庆, 周炳海, 李玲 . 多设备系统的生产批量、质量控制与预知维护联合优化[J]. 系统工程理论与实践, 2019, 39(8): 2152-2161.
[14] 王鸿鹭, 蒋炜, 魏来, 等 . 基于物联网的产品全生命周期质量管理的模式创新与展望[J]. 系统工程理论与实践, 2021, 41(2): 475-482.
[15] Psarommatis F, Sousa J, Mendonça J P, et al. Zero-defect manufacturing the approach for higher manufacturing sustainability in the era of industry 4.0: A position paper[J]. International Journal of Production Research, 2022, 60(1): 73-91.
[16] 宗福季 . 数字化转型下工业大数据在质量创新中的应用[J]. 宏观质量研究, 2021, 9(3): 1-11.
[17] 袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状[J]. 自动化学报, 2020, 46(10): 2013-2030.
[18] Gunasekaran A, Subramanian N, Ngai W T E. Quality management in the 21st century enterprises: Research pathway towards Industry 4.0[J]. International Journal of Production Economics, 2019, 207: 125-129.
[19] Asif M. Are QM models aligned with Industry 4.0? A perspective on current practices[J]. Journal of Cleaner Production, 2020, 258: 120820.
[20] Zonnenshain A, Kenett R S. Quality 4.0-the challenging future of quality engineering[J]. Quality Engineering, 2020, 32(4): 614-626.
[21] Glogovac M, Ruso J, Maricic M. ISO 9004 maturity model for quality in industry 4.0[J]. Total Quality Management & Business Excellence, 2020, 33(5/6): 529-547.
[22] Ali K, Johl S K. Soft and hard TQM practices: Future research agenda for industry 4.0[J]. Total Quality Management & Business Excellence, 2022, 33(13/14): 1625-1655.
[23] Fonseca L, Amaral A, Oliveira J. Quality 4.0: The EFQM 2020 model and Industry 4.0 relationships and implications[J]. Sustainability, 2021, 13(6): 3107.
[24] 张明强, 高华, 袁东风, 等 . 云边协同外观质量 AI检测系统的设计与实现[J/OL]. 计算机集成制造系统, 2021.[2023-01-10]. https://kns. cnki. net/kcms/detail/11.5946.TP.20211112.1252.012.html.
[25] 张洁, 汪俊亮, 吕佑龙, 等 . 大数据驱动的智能制造[J].中国机械工程, 2019, 30(2): 127-133, 158.
[26] 刘献礼, 李雪冰, 丁明娜, 等 . 面向智能制造的刀具全生命周期智能管控技术[J]. 机械工程学报, 2021, 57(10): 196-219.
[27] 赵丽, 程铁信, 莫莹, 等 . 基于 C5.0 改进算法的焊接工艺参数选择决策树数据挖掘模型及其应用[J]. 中国管理科学, 2016, 24(增刊1): 177-182.
[28] 李杰, 李响, 许元铭, 等 . 工业人工智能及应用研究现状及展望[J]. 自动化学报, 2020, 46(10): 2031-2044.
[29] Asif K, Zhang L, Derrible S, et al. Machine learning model to predict welding quality using air-coupled acoustic emission and weld inputs[J]. Journal of Intelligent Manufacturing, 2022, 33(3): 881-895.
[30] Zhou B, Pychynski T, Reischl M, et al. Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding[J]. Journal of Intelligent Manufacturing, 2022, 33(4): 1139-1163.
[31] 董海, 高秀秀, 魏铭琦. 基于深度学习的完全填充型熔融沉积成型零件质量预测方法[J]. 计算机集成制造系统, 2023, 29(1): 200-211.
[32] 柏雪, 李剑锋 . 基于 Bagging 集成算法的产品质量等级智能判定研究[J]. 工业工程与管理, 2022, 27(4): 58-66.
[33] 李敏波, 董伟伟 . 面向不平衡数据集的汽车零部件质量预测[J]. 中国机械工程, 2022, 33(1): 88-96.
[34] Singh S A, Desai K A. Automated surface defect detection framework using machine vision and convolutional neural networks[J]. Journal of Intelligent Manufacturing, 2022, 34: 1995-2011.
[35] 李丽丽, 陈琨, 高建民, 等 . 采用优化概率神经网络的质量异常识别方法[J]. 计算机集成制造系统, 2021, 27(10): 2813-2821.
[36] 封晓斌, 汤易兵, 吴增源, 等 . 基于 SRFML-Lift 的流程制造产品质量状态监测[J]. 中国管理科学, 2021, 29(12): 227-236.
[37] 郭飞燕, 刘检华, 邹方, 等 . 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报, 2019, 55(17): 110-132.
[38] Aivaliotis P, Georgoulias K, Chryssolouris G. The use of digital twin for predictive maintenance in manufacturing[J]. International Journal of Computer Integrated Manufacturing, 2019, 32(11): 1067-1080.
[39] Wang J, Ye L, Gao R X, et al. Digital twin for rotating machinery fault diagnosis in smart manufacturing[J]. International Journal of Production Research, 2019, 57(12): 3920-3934.
[40] de Assis D J, Nestor F A, Alejandro G F. Smart working in Industry 4.0: How digital technologies enhance manufacturing workers' activities[J]. Computers & Industrial Engineering, 2022, 163: 107804.
[41] Mordia R, Verma A K. Visual techniques for defects detection in steel products: A comparative study[J]. Engineering Failure Analysis, 2022, 134: 106047.
[42] Zhou X N, Wang Y N, Zhu Q, et al. Circle detection with model fitting in polar coordinates for glass bottle mouth localization[J]. International Journal of Advanced Manufacturing Technology, 2022, 120(1/2): 1041-1051.
[43] 朱永国, 张文博, 邓正平, 等 . 基于激光跟踪仪和机器视觉的飞机翼身对接装配偏差动态综合修正[J]. 机械工程学报, 2019, 55(24): 187-196.
[44] 曹伟, 江平宇, 江开勇, 等. 基于RFID技术的离散制造车间实时数据采集与可视化监控方法[J]. 计算机集成制造系统, 2017, 23(2): 273-284.
[45] 陈亮, 吴梦婷 . 智能车间质量数据集成及可视化分析平台设计[J]. 计算机集成制造系统, 2021, 27(6): 1641-1649.
[46] 程晓明, 刘银华, 赵文政. 面向大型三维结构检测的多机器人覆盖路径规划方法[J]. 计算机集成制造系统, 2023, 29(1): 246-253.
[47] Watson G H. The ascent of quality 4.0[J]. Quality Progress, 2019, 52(3): 24-30.
[48] Shin W S, Dahlgaard J J, Dahlgaard-Park S M, et al. A quality scorecard for the era of Industry 4.0[J]. Total Quality Management & Business Excellence, 2018, 29(9/10): 959-976.
[49] 工业和信息化部. 制造业质量管理数字化实施指南(试行) [S/OL]. [2022-12-23]. https://www.miit. gov. cn/zwgk/zcwj/wjfb/tz/art/2022/rt_a4a9b2d8222a4024a5b4f-3dc1ec2f0a4.html.
[50] 任明仑, 宋月丽. 大数据: 数据驱动的过程质量控制与改进新视角[J]. 计算机集成制造系统, 2019, 25(11): 2731-2742.
[51] 孙滔, 周铖, 段晓东, 等. 数字孪生网络(DTN): 概念、架构及关键技术[J]. 自动化学报, 2021, 47(3): 569-582.
[52] 武颖, 姚丽亚, 熊辉, 等 . 基于数字孪生技术的复杂产品装配过程质量管控方法[J]. 计算机集成制造系统, 2019, 25(6): 1568-1575.
[53] Ismail M, Mostafa N A, Elassal A. Quality monitoring in multistage manufacturing systems by using machine learning techniques[J]. Journal of Intelligent Manufacturing, 2022, 33(8): 2471-2486.
[54] 房鑫洋, 张洁, 吕佑龙, 等. 基于Attention-BLSTM 的复杂产品制造质量预测方法[J/OL]. 计算机集成制造系统, 2023. [2023-01-10]. http://kns.cnki.net/kcms/detail/11.5946.TP.20211126.1817.008.html.
[55] 侯红玲, 陈鑫, 常向龙, 等. 基于遗传算法优化BP神经网络的内螺纹冷挤压质量预测[J]. 塑性工程学报, 2022, 29(1): 102-109.
[56] 于勇, 薛静远, 戴晟, 等 . 机加零件质量预测与工艺参数优化方法[J]. 浙江大学学报(工学版), 2021, 55(3): 441-447, 499.
[57] 张振刚, 林丹 . 数据赋能离散式制造的特定工件的质量符合率预测[J]. 工业工程与管理, 2021, 26(4): 28-35.
[58] Kumar R R, Ganesh L S, Rajendran C. Quality 4.0-a review of and framework for quality management in the digital era[J]. International Journal of Quality & Reliability Management, 2022, 39: 1385-1411.
文章导航

/