专稿

超快科学研究进展及发展建议

  • 雷冰莹 ,
  • 张理奕 ,
  • 林华 ,
  • 付玉喜 ,
  • 赵卫 ,
  • 侯洵
展开
  • 1. 中国科学院西安光学精密机械研究所阿秒科学与技术研究中心,西安 710119
    2. 中国科学院大学,北京 100049
雷冰莹,特别研究助理,研究方向为高功率激光技术,电子信箱:leibingying2016@opt.ac.cn

收稿日期: 2022-10-18

  修回日期: 2023-03-06

  网络出版日期: 2023-06-26

基金资助

国家自然科学基金项目(12104501,62175256,92050107,61690222);陕西省自然科学基础研究计划项目(2019JCW-03);中国科学院重大科技基础设施预研项目(J20-021-III)

Research progress and prospect of ultrafast science

  • LEI Bingying ,
  • ZHANG Liyi ,
  • LIN Hua ,
  • FU Yuxi ,
  • ZHAO Wei ,
  • HOU Xun
Expand
  • 1. Center for Attosecond Science and Technology, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2022-10-18

  Revised date: 2023-03-06

  Online published: 2023-06-26

摘要

超快科学以超快光源和超快探测为主要研究手段,通过对微观世界超快动力学过程 的测量和操控,实现对宏观物质的理解、应用和控制 。作为当前国际科技最重要的前沿方向之一,超快科学的发展将为众多学科提供重要的原始创新驱动力,其突破将助力解决关乎国 家重大需求和人民生命健康相关的诸多重大问题 。聚焦超快科学中的超快激光技术、超快 测量技术及超快动力学的研究,主要介绍了其发展现状、应用现状和发展前景,分析了中国超快科学发展存在的问题,提出了超快科学发展的具体建议,即加强顶层设计,促进产业化,完善人才培养评价机制,支持重大科技基础设施和国际大科学计划。

本文引用格式

雷冰莹 , 张理奕 , 林华 , 付玉喜 , 赵卫 , 侯洵 . 超快科学研究进展及发展建议[J]. 科技导报, 2023 , 41(10) : 9 -30 . DOI: 10.3981/j.issn.1000-7857.2023.10.002

Abstract

Ultrafast science employs ultrafast light sources and ultrafast measurement as the main approaches to understand, apply and control macroscopic matter through the measurement and manipulation of ultrafast kinetic processes of microscopic particles. As one of the most important frontiers in international science and technology, the development of ultrafast science will provide an important impetus for original innovation in numerous disciplines. Its breakthroughs will help to address many important issues related to the vital national needs and public health. This paper focuses on the research of ultrafast laser technology, ultrafast measurement technology and ultrafast dynamics in ultrafast science, mainly introducing their development status, frontier application and future prospect. In-depth analysis of the problems facing the development of ultrafast science in China is provided, and specific recommendations are proposed to promote its development, including strengthening top-level design, promoting industrialization, improving the evaluation mechanism for talent cultivation, supporting major scientific and technological infrastructures, and participating in international big science programs.

参考文献

[1] Xu X R, Zhong C L, Zhang Y, et al. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma[J]. Acta Physica Sinica, 2021, 70(8): 084206.
[2] 侯洵. 超短脉冲激光及其应用[J]. 空军工程大学学报(自然科学版), 2000, 1(1): 1-5.
[3] Liu J, Zeng Z N, Liang X Y, et al. Development trend of ultrafast and ultraintense lasers and their scientific application[J]. Chinese Journal of Engineering Science, 2020, 22(3): 42.
[4] Demaria A J, Stetser D A, Heynau H. Self mode-locking of lasers with saturable absorbers[J]. Applied Physics Letters, 1966, 8(7): 174-176.
[5] Shank C V, Ippen E P. Subpicosecond kilowatt pulses from a modelocked cw dye laser[J]. Applied Physics Letters, 1974, 24(8): 373-375.
[6] Fork R L, Greene B I, Shank C V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking[J]. Applied Physics Letters, 1981, 38(9): 10.1063/1.92500.
[7] Chen G, Finch A, Sibbett W, et al. Generation and measurement of 19 femtosecond light pulses[C]//18th Intl Congress on High Speed Photography and Photonics. Bellingham: SPIE, 1989, doi: 10.1117/12.969140.
[8] Fattahi H. Third-generation femtosecond technology[D]. Munich: Faculty of Physics, LMU München, 2015.
[9] Knox W H, Downer M C, Fork R L, et al. Amplified femtosecond optical pulses and continuum generation at 5-kHz repetition rate[J]. Optics Letters, 1984, 9(12): 552-554.
[10] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221.
[11] Moulton P F. Spectroscopic and laser characteristics of Ti: Al2O3 [J]. Journal of the Optical Society of America B, 1986, 3(1): 125.
[12] Albers P, Stark E, Huber G. Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire[J]. Journal of the Optical Society of America B, 1986, 3(1): 134.
[13] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: Sapphire laser[J]. Optics Letters, 1991, 16(1): 42-44.
[14] Sullivan A, Hamster H, Kapteyn H C, et al. Multiterawatt, 100-fs laser[J]. Optics Letters, 1991, 16(18): 1406-1408.
[15] Salin F, Vaillancourt G, Squier J, et al. Multikilohertz Ti:Al2O3 amplifier for high-power femtosecond pulses[J]. Optics Letters, 1991, 16(24): 1964.
[16] Rudd J V, Bado P, Korn G, et al. Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier[J]. Optics Letters, 1993, 18(23): 2044.
[17] Zhao S H, Wang Y S, Chen G F, et al. Amplification and compression of Ti: Sapphire femtosecond pulses at high-repetition-rate[J]. Science in China Series A: Mathematics, 1998, 41(1): 107-112.
[18] Wei Z Y, Zhang J, Xia J F, et al. Highly efficient TW multipass Ti: Sapphire laser system[J]. Science in China Series A: Mathematics, 2000, 43(10): 1083-1087.
[19] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7(3): 172-225.
[20] Chu Y X, Liang X Y, Yu L H, et al. High-contrast 2.0 Petawatt Ti: Sapphire laser system[J]. Optics Express, 2013, 21(24): 29231-29239.
[21] Chu Y X, Gan Z B, Liang X Y, et al. High-energy large-aperture Ti: Sapphire amplifier for 5 PW laser pulses[J]. Optics Letters, 2015, 40(21): 5011-5014.
[22] Li W Q, Gan Z B, Yu L H, et al. 339 J high-energy Ti: sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 2018, 43(22): 5681-5684.
[23] Zeng X M, Zhou K N, Zuo Y L, et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017.
[24] Fu Y X, Midorikawa K, Takahashi E J. Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification[J]. Scientific Reports, 2018, 8(1): 7692.
[25] Fu Y X, Midorikawa K, Takahashi E J. Dual-chirped optical parametric amplification: A method for generating super-intense mid-infrared few-cycle pulses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(4), doi: 10.1109/JSTQE.2019.2925720.
[26] Fu Y X, Xue B, Midorikawa K, et al. TW-scale mid-infrared pulses near 3.3 µm directly generated by dual-chirped optical parametric amplification[J]. Applied Physics Letters, 2018, 112(24): 241105.
[27] Yuan H, Cao H B, Wang H S, et al. Development and prospect on driving laser for attosecond pulse[J]. Chinese Science Bulletin, 2021, 66(8): 878-888.
[28] Cheng Z, Tempea G, Brabec T, et al. Generation of intense diffraction-limited white light and 4-fs pulses[C]//CLEO/Europe Conference on Lasers and Electro-Optics.Piscataway: IEEE, 2003: 3.
[29] Schenkel B, Biegert J, Keller U, et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum[J]. Optics Letters, 2003, 28(20): 1987-1989.[30] Matsubara E, Yamane K, Sekikawa T, et al. Generation of 26 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber[J]. Journal of the Optical Society of America B, 2007, 24(4): 985.[LinkOut]
[31] Chia S H, Cirmi G, Fang S B, et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers[J]. Optica, 2014, 1(5): 315.
[32] Ma W Z, Wang T S, Zhang P, et al. Widely tunable multiwavelength thulium-doped fiber laser using a fiber interferometer and a tunable spatial mode-beating filter[J]. Applied Optics, 2015, 54(12): 3786.
[33] Wang L, Wan M G, Shen Z K, et al. Wavelength-swept fiber laser based on bidirectional used linear chirped fiber Bragg grating[J]. Photonics Research, 2017, 5(3): 219.
[34] Sun X J, Wei J, Wang W Z, et al. Realization of a continuous frequency-tuning Ti: Sapphire laser with an intracavity locked etalon[J]. Chinese Optics Letters, 2015, 13(7): 71401-71404.
[35] Zhang R J, Yu B L, Cao Z G, et al. Frequency modulated and polarization maintaining fiber laser with narrow linewidth[J]. Optics Communications, 2007, 274(2): 392-395.
[36] Zheng Y, Lu H, Li Y, et al. Broadband and rapid tuning of an all-solid-state single-frequency Nd: YVO4 laser[J]. Applied Physics B, 2008, 90(3): 485-488.
[37] Wei F, Lu B, Cao Y L, et al. Narrow-linewidth laser source with precision frequency tunability for distributed optical sensing applications[C]//International Conference on Optical Fibre Sensors (OFS24). Bellingham: SPIE, 2015, 9634: 916-919.
[38] Shin D K, Henson B M, Khakimov R I, et al. Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 10-11 µm[J]. Optics Express, 2016, 24(24): 27403-27414.
[39] 邹华, 周常河 . 飞秒脉冲时空变换整形技术[J]. 激光与 光电子学进展, 2005, 42(2): 2-7.
[40] Yao Y H, Lu C H, Xu S W, et al. Femtosecond pulse shaping technology and its applications[J]. Acta Physica Sinica, 2014, 63(18): 184201.
[41] 田梦瑶, 左佩, 梁密生, 等 . 飞秒激光加工低维纳米材 料及应用[J]. 中国激光, 2021, 48(2): 38-58.
[42] 杜海伟, 许晨 . 缓慢上升快速下降的飞秒激光脉冲与气体等离子体作用的太赫兹辐射产生研究[J]. 红外与激光工程, 2022, 51(5): 174-181.
[43] Judson R S, Rabitz H. Teaching lasers to control molecules[J]. Physical Review Letters, 1992, 68(10): 1500-1503.
[44] Brixner T, Strehle M, Gerber G. Feedback-controlled optimization of amplified femtosecond laser pulses[J]. Applied Physics B, 1999, 68(2): 281-284.
[45] Efimov A, Moores M D, Beach N M, et al. Adaptive control of pulse phase in a chirped-pulse amplifier[J]. Optics Letters, 1998, 23(24): 1915-1917.
[46] 杨煜东, 魏志义 . 亚周期激光脉冲光场整形研究[J]. 光子学报, 2022, 51(1): 163-173.
[47] Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 2001, 414(6863): 509-513.
[48] Paul P M, Toma E S, Breger P, et al. Observation of a train of attosecond pulses from high harmonic generation[J]. Science, 2001, 292(5522): 1689-1692.
[49] 魏志义, 钟诗阳, 贺新奎, 等 . 阿秒光学进展及发展趋势[J]. 中国激光, 2021, 48(5): 9-24.
[50] Furch F J, Witting T, Osolodkov M, et al. High power, high repetition rate laser-based sources for attosecond science[J]. Journal of Physics: Photonics, 2022, 4(3): 032001.
[51] Wei Z Y, Xu S Y, Jiang Y J, et al. Principle and progress of attosecond pulse generation[J]. Chinese Science Bulletin, 2021, 66(8): 889-901.
[52] Takahashi E, Nabekawa Y, Midorikawa K. Generation of 10-µJ coherent extreme-ultraviolet light by use of high-order harmonics[J]. Optics Letters, 2002, 27(21): 1920.
[53] Mashiko H, Gilbertson S, Chini M, et al. Extreme ultraviolet supercontinua supporting pulse durations of less than one atomic unit of time[J]. Optics Letters, 2009, 34(21): 3337-3339.
[54] Sansone G, Benedetti E, Calegari F, et al. Isolated single-cycle attosecond pulses[J]. Science, 2006, 314(5798): 443-446.
[55] Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883):1614-1617.
[56] Zhao K, Zhang Q, Chini M, et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch[J]. Optics Letters, 2012, 37(18): 3891-3893.
[57] Li J, Ren X M, Yin Y C, et al. 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 2017, 8(1): 186.
[58] Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25(22): 27506-27518.
[59] Zhan M J, Ye P, Teng H, et al. Generation and measurement of isolated 160-attosecond XUV laser pulses at 82 eV[J]. Chinese Physics Letters, 2013, 30(9): 093201.
[60] 王向林, 徐鹏, 李捷, 等 . 利用自研阿秒条纹相机测得159as 孤立阿秒脉冲[J]. 中国激光, 2020, 47(4): 329-332.
[61] Fu Y X, Nishimura K, Shao R Z, et al. High efficiency ultrafast water-window harmonic generation for single-shot soft X-ray spectroscopy[J]. Communications Physics, 2020, 3(1): 92.
[62] Wang X, Wang L, Xiao F, et al. Generation of 88 as isolated attosecond pulses with double optical gating[J].Chinese Physics Letters, 2020, 37(2): 023201.
[63] Yang Z, Cao W, Chen X, et al. All-optical frequency-resolved optical gating for isolated attosecond pulse reconstruction[J]. Optics Letters, 2020, 45(2): 567.
[64] Biegert J, Calegari F, Dudovich N, et al. Attosecond technology(ies) and science[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54(7): 070201.
[65] Courtney-Pratt J S. A new method for the photographic study of fast transient phenomena[J]. Research; A Journal of Science and Its Applications, 1949, 2(6): 287-294.
[66] Bradley D J, Liddy B, Sleat W E. Direct linear measurement of ultrashort light pulses with a picosecond streak camera[J]. Optics Communications, 1971, 2(8): 391-395.
[67] Zhao W, Hou X, Tian J S. Historical development and application of ultra fast diagnosis based on image tube in XIOPM[C]//27th International congress on High-Speed Photography and Photonics. Bellingham: SPIE, 6279: 67-83.
[68] Niu H, Wang S C, Chao J L, et al. A picosecond synchroscan streak camera system[C]//18th Intl Congress on High Speed Photography and Photonics. Bellingham: SPIE, 1989: 58.
[69] Niu H. Experimental study of femtosecond streak image tube[C]//Dewey J M, Racca R G. 20th International Congress on High Speed Photography and Photonics. Bellingham: SPIE, 1993: 1035-1041.
[70] Chang Z, Rundquist A, Wang H, et al. Demonstration of a 0.54-ps X-ray streak camera[C]//22nd International Congress on High-Speed Photography and Photonics. Bellingham: SPIE, 1997: 971-976.
[71] 廖华, 胡昕, 杨勤劳, 等 . 宽量程高时间分辨扫描变像管[J]. 强激光与粒子束, 2011, 23(1): 79-82.
[72] 宗方轲, 雷保国, 顾礼, 等 . 应用于高速条纹相机的行波偏转器设计[J]. 激光与光电子学进展, 2017, 54(4):321-327.
[73] Kane D J, Trebino R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating[J]. IEEE Journal of Quantum Electronics, 1993, 29(2): 571-579.
[74] Iaconis C, Walmsley I A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses[J]. Optics Letters, 1998, 23(10): 792.
[75] Delong K W, Trebino R, Kane D J. Comparison of ultrashort-pulse frequency-resolved-optical-gating traces for
three common beam geometries[J]. Journal of the Optical Society of America B, 1994, 11(9): 1595.
[76] Kane D J, Trebino R. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating[J]. Optics Letters, 1993, 18(10): 823-825.
[77] Delong K W, Trebino R. Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating[J]. Journal of the Optical Society of America A, 1994, 11(9): 2429.
[78] Park S B, Kim K, Cho W, et al. Direct sampling of a light wave in air[J]. Optica, 2018, 5(4): 402.
[79] 王虎山, 曹华保, 皮良文, 等 . 阿秒脉冲产生和测量技术研究进展[J]. 光子学报, 2021, 50(1): 9-33.
[80] Tzallas P, Charalambidis D, Papadogiannis N A, et al. Direct observation of attosecond light bunching[J]. Nature, 2003, 426(6964): 267-271.
[81] 曹伟, 陆培祥 . 基于高次谐波阿秒光源的超快测量技术[J]. 光子学报, 2021, 50(8): 49-66.
[82] Kim K T, Zhang C, Shiner A D, et al. Manipulation of quantum paths for space-time characterization of attosecond pulses[J]. Nature Physics, 2013, 9(3): 159-163.
[83] Scrinzi A, Geissler M, Brabec T. Attosecond cross correlation technique[J]. Physical Review Letters, 2001, 86(3): 412-415.
[84] Bandrauk A D, Chelkowski S, Shon N H. How to measure the duration of subfemtosecond xuv laser pulses using asymmetric photoionization[J]. Physical Review A, 2003, 68(4): 041802.
[85] Muller H G. Reconstruction of attosecond harmonic beating by interference of two-photon transitions[J]. Applied Physics B, 2002, 74(1): s17-s21.
[86] Mairesse Y, Quéré F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts[J]. Physical Review A, 2005, 71(1): 011401.
[87] Chini M, Gilbertson S, Khan S D, et al. Characterizing ultrabroadband attosecond lasers[J]. Optics Express, 2010, 18(12): 13006-13016.
[88] Porter G N. Flash photolysis and spectroscopy: A new method for the study of free radical reactions[J]. Proceedings of the Royal Society of London. 1950, 200(1061): 284-300.
[89] Shelton J, Armstrong J. Measurement of the relaxation time of the Eastman 9740 bleachable dye[J]. IEEE Journal of Quantum Electronics, 1967, 3(12): 696-697.
[90] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234.
[91] Zewail A H. Femtochemistry: Atomic-scale dynamics of the chemical bond[J]. The Journal of Physical Chemistry A, 2000, 104(24): 5660-5694.
[92] Scherer N F, Knee J L, Smith D D, et al. Femtosecond photofragment spectroscopy: The reaction ICN → CN + I[J]. The Journal of Physical Chemistry, 1985, 89(24): 5141-5143.
[93] Rosker M J, Dantus M, Zewail A H. Femtosecond real time probing of reactions. I. The technique[J]. The Journal of Chemical Physics, 1988, 89(10): 6113-6127.
[94] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288.
[95] Zhao K. Laser, chirped pulse amplification, ultrafast optics, and Nobel Prize in Physics[J]. Chinese Science Bulletin, 2019, 64(14): 1433-1440.
[96] 赵继民 . 超快光谱技术及其在凝聚态物理研究中的应用[J]. 物理, 2011, 40(3): 184-193.
[97] Wu Q, Tian Y, Wu Y, et al. Ultrafast optical spectroscopy of high-temperature superconductors[J]. Chinese Science Bulletin, 2017, 62(34): 3995-4009.
[98] Tannor D J, Rice S A. Control of selectivity of chemical reaction via control of wave packet evolution[J]. The Journal of Chemical Physics, 1985, 83(10): 5013-5018.
[99] Shapiro M, Brumer P. The equivalence of unimolecular decay product yields in pulsed and cw laser excitation[J]. The Journal of Chemical Physics, 1986, 84(1): 540-541.
[100] Wiseman H M. Feedback in open quantum systems[J]. Modern Physics Letters B, 1995, 09(11n12): 629-654.
[101] Werschnik J, Gross E K U. Quantum optimal control theory[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40(18): R175-R211.
[102] Guo H, Liu K. Control of chemical reactivity by transition-state and beyond[J]. Chemical Science, 2016, 7(7): 3992-4003.
[103] Tian Y C, Zhang W H, Li F S, et al. Ultrafast dynamics evidence of high temperature superconductivity in single unit cell FeSe on SrTiO3[J]. Physical Review Letters, 2016, 116(10): 107001.
[104] Sun F, Wu Q, Wu Y L, et al. Coherent helix vacancy phonon and its ultrafast dynamics waning in topological Dirac semimetal Cd3As2[J]. Physical Review B, 2017, 95(23): 235108.
[105] Wu Q, Sun F, Zhang Q Y, et al. Quasiparticle dynamics and electron-phonon coupling in Weyl semimetal TaAs[J]. Physical Review Materials, 2020, 4(6): 064201.
[106] Wu Y L, Yin X, Hasaien J, et al. High-pressure ultrafast dynamics in Sr2IrO4: Pressure-induced phonon bottleneck effect[J]. Chinese Physics Letters, 2020, 37(4): 047801.
[107] Hu L L, Yang M, Wu Y L, et al. Strong pseudospin-lattice coupling in Sr3Ir2O7 : Coherent phonon anomaly and negative thermal expansion[J]. Physical Review B, 2019, 99(9): 094307.
[108] Zhao J M, Bragas A V, Lockwood D J, et al. Magnon squeezing in an antiferromagnet: Reducing the spin noise below the standard quantum limit[J]. Physical Review Letters, 2004, 93(10): 107203.
[109] Duan S F, Cheng Y, Xia W, et al. Optical manipulation of electronic dimensionality in a quantum material[J]. Nature, 2021, 595(7866): 239-244.
[110] Ma Z R, Zou X, Zhao L R, et al. Ultrafast isolated molecule imaging without crystallization[J]. Proceedings of the National Academy of Sciences, 2022, 119(15): e2122793119.
[111] Gutzler R, Garg M, Ast C R, et al. Light-matter interaction at atomic scales[J]. Nature Reviews Physics, 2021, 3(6): 441-453.
[112] Nunes G Jr, Freeman M R. Picosecond resolution in scanning tunneling microscopy[J]. Science, 1993, 262(5136): 1029-1032.
[113] Terada Y, Yoshida S, Takeuchi O, et al. Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy[J]. Nature Photonics, 2010, 4(12): 869-874.
[114] Cocker T L, Jelic V, Gupta M, et al. An ultrafast terahertz scanning tunnelling microscope[J]. Nature Photonics, 2013, 7(8): 620-625.
[115] Cocker T L, Peller D, Yu P, et al. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging[J]. Nature, 2016, 539(7628): 263-267.
[116] Luo Y, Martin-Jimenez A, Gutzler R, et al. Ultrashort pulse excited tip-enhanced Raman spectroscopy in molecules[J]. Nano Letters, 2022, 22(13): 5100-5106.
[117] Van Oijen A M, Ketelaars M, Köhler J, et al. Unraveling the electronic structure of individual photosynthetic pigment-protein complexes[J]. Science, 1999, 285(5426): 400–402.
[118] Van Brederode M E, Jones M R, Van Mourik F, et al. A new pathway for transmembrane electron transfer in
photosynthetic reaction centers of rhodobacter sphaeroides not involving the excited special pair[J]. Biochemistry, 1997, 36(23): 6855-6861.
[119] Douhal A, Santamaria J. Femtochemistry and femtobiology: Ultrafast dynamics in molecular science[M]. River Edge: World Scientific, 2002.
[120] Hao W, Zhai Y, Zhang Q, et al. Attosecond light source in material science investigation[J]. Chinese Science Bulletin, 2021, 66(8): 856-864.
[121] Drescher M, Hentschel M, Kienberger R, et al. Time-resolved atomic inner-shell spectroscopy[J]. Nature, 2002, 419(6909): 803-807.
[122] Uiberacker M, Uphues Th, Schultze M, et al. Attosecond real-time observation of electron tunnelling in atoms[J]. Nature, 2007, 446(7136): 627-632.
[123] Schultze M, Fiess M, Karpowicz N, et al. Delay in photoemission[J]. Science, 2010, 328(5986): 1658-1662.
[124] Klünder K, Dahlström J M, Gisselbrecht M, et al. Probing single-photon ionization on the attosecond time scale[J]. Physical Review Letters, 2011, 106(14): 143002.
[125] Maquet A, Caillat J, Taïeb R. Attosecond delays in photoionization: timeandquantum mechanics[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47(20): 204004.
[126] Calegari F, Ayuso D, Trabattoni A, et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses[J]. Science, 2014, 346(6207): 336-339.
[127] Lakhotia H, Kim H Y, Zhan M, et al. Laser picoscopy of valence electrons in solids[J]. Nature, 2020, 583(7814): 55-59.
[128] Xu H Y, Cao W, Zhang J, et al. Mapping time-dependent quasi-energies of laser dressed helium[J]. Optics Express, 2021, 29(7): 11342-11352.
[129] Mi K, Cao W, Xu H Y, et al. Perturbed ac stark effect for attosecond optical-waveform sampling[J]. Physical Review Applied, 2020, 13(1): 014032.
[130] Zhang S J, Wang Z X, Xiang H, et al. Photoinduced nonequilibrium response in underdoped YBa2Cu3O6+x probed by time-resolved terahertz spectroscopy[J]. Physical Review X, 2020, 10(1): 011056.
[131] Xu X R, Qiao B, Yu T P, et al. The effect of target thickness on the efficiency of high-order harmonics generated from laser-driven overdense plasma target[J]. New Journal of Physics, 2019, 21(10): 103013.
[132] Cheng Y, Zong A, Li J, et al. Light-induced dimensioncrossover dictated by excitonic correlations[J]. Nature Communications, 2022, 13(1): 963.
[133] Lv C, Zhao B Z, Wan F, et al. Effect of the electron heating transition on the proton acceleration in a strongly magnetized plasma[J]. Physics of Plasmas, 2019, 26(10): 103101.
[134] Liu C D, Jia Z M, Zheng Y H, et al. Research progress of the control and measurement of the atomic and molecular ultrafast electron dynamics using two-color field[J]. Acta Physica Sinica, 2016, 65(22): 223206.
[135] Leone S R, Mccurdy C W, Burgdörfer J, et al. What will it take to observe processes in'real time'?[J]. Nature Photonics, 2014, 8(3): 162-166.
[136] Wang T S. Development trend of laser technology application in the information field toward 2035[J]. Chinese Journal of Engineering Science, 2020, 22(3): 7.
[137] 姜会林, 安岩, 张雅琳, 等 . 空间激光通信现状、发展趋势及关键技术分析[J]. 飞行器测控学报, 2015, 34(3): 207-217.
[138] 金国藩, 张培琨 . 超高密度光存储技术的现状和今后的发展[J]. 中国计量学院学报, 2001, 12(2): 6-12.
[139] 余少华, 杨奇, 薛道均, 等.“三超”光传输关键技术研究[J]. 光通信研究, 2014(6): 1-6, 10.
[140] 苏文静, 胡巧, 赵苗, 等. 光存储技术发展现状及展望[J]. 光电工程, 2019, 46(3): 4-10.
[141] Swanson E A, Fujimoto J G. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited][J]. Biomedical Optics Express, 2017, 8(3): 1638-1664.
[142] Orringer D A, Pandian B, Niknafs Y S, et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy[J]. Nature Biomedical Engineering, 2017, 1(2): 0027.
[143] Lin L, Hu P, Shi J H, et al. Single-breath-hold photoacoustic computed tomography of the breast[J]. Nature Communications, 2018, 9(1): 2352.
[144] Qiu H X, Li B H, Ma H, et al. Medical application and industrial development strategy of laser technology in China[J]. Chinese Journal of Engineering Science, 2020, 22(3): 14.
[145] 杨建军 . 飞秒激光超精细“冷”加工技术及其应用(I)[J]. 激光与光电子学进展, 2004, 41(3): 42-52, 57.
[146] Craig B. Ultrafast pulses promise better processing of fine structures[J]. Laser Focus World, 1998, 34(9): 79-84.
[147] Weiss P. Hot flashes, cold cuts: Ultrafast lasers give power tools a new edge[J]. Science News, 2002, 162(20): 315-317.
[148] 唐明俊, 杨春俊, 刘盛秀, 等. 超脉冲二氧化碳激光在皮肤美容方面的应用[C]//中华医学会第六次全国医学美学与美容学术年会暨第五次全国中青年学术会议论文集. 北京: 中华医学会, 2009: 420-421.
[149] Dumitru G, Romano V, Weber H P, et al. Femtosecond ablation of ultrahard materials[J]. Applied Physics A: Materials Science & Processing, 2002, 74(6): 729-739.
[150] Perry M D, Stuart B C, Banks P S, et al. Ultrashort-pulse laser machining of dielectric materials[J]. Journal of Applied Physics, 1999, 85(9): 6803-6810.
[151] Rizvi N H, Karnakis D, Gower M C. Micromachining of industrial materials with ultrafast lasers[C]//International Congress on Applications of Lasers & Electro-Optics. Jacksonville: Laser Institute of America, 2001: 1511-1520.
[152] Ihlemann J, Scholl A, Schmidt H, et al. Nanosecond and femtosecond excimer-laser ablation of oxide ceramics[J]. Applied Physics A: Materials Science & Processing, 1995, 60(4): 411-417.
[153] Venkatakrishnan K, Ngoi B K A, Stanley P, et al. Laser writing techniques for photomask fabrication using a femtosecond laser[J]. Applied Physics A: Materials Science & Processing, 2002, 74(4): 493-496.
[154] Gower M C. Industrial applications of laser micromachining[J]. Optics Express, 2000, 7(2): 56-67.
文章导航

/