综述

绳牵引并联机构的技术研究现状与应用进展

  • 韦慧玲 ,
  • 罗陆锋 ,
  • 卢清华 ,
  • 陈为林 ,
  • 王金海
展开
  • 1. 佛山科学技术学院 机电工程与自动化学院,佛山 528225 
    2. 佛山科学技术学院 电子信息工程学院,佛山 528225
韦慧玲,博士,研究方向为绳牵引并联机器人、采摘机器人、智能控制等,电子信箱:weihuiling2007@126.com

收稿日期: 2022-03-08

  修回日期: 2022-05-10

  网络出版日期: 2023-04-23

基金资助

国家自然科学基金青年项目(52205254);广东省基础与应用基础研究基金项目(2020A1515111056,2020B1515120050, 2020B1515120070);国 家 自 然 科 学 基 金 项 目(32171909);广 东 省 普 通 高 校 科 研 项 目(2019KTSCX197,2018KZDXM074, 2020KCXTD015);佛山科学技术学院高层次人才科研启动项目(099/CGG07219)

Technical research status and application progress of cable-driven parallel mechanism

  • WEI Huiling ,
  • LUO Lufeng ,
  • LU Qinghua ,
  • CHEN Weilin ,
  • WANG Jinhai
Expand
  • 1. School of Mechatronics Engineering and Automation, Foshan University, Foshan 528225, China 
    2. School of Electronic Information Engineering, Foshan University, Foshan 528225, China

Received date: 2022-03-08

  Revised date: 2022-05-10

  Online published: 2023-04-23

摘要

绳牵引并联机构是一类以柔性绳索代替刚性连杆为驱动元件的并联机器人,具有运动速度快、承载能力大、运动链惯性小、工作空间大及环境适应性好等优点,为工程问题的解决提供了新的思路和手段,近年来一直是国际并联机构领域的研究热点。介绍了绳牵引并联机构的特点,从物料搬运、天文观测、风洞试验、高速摄像、运动模拟、肢体康复、外科手术、三维打印等领域总结了绳牵引并联机构的技术研究现状和工程应用进展,探讨了绳牵引并联机构的发展趋势。

本文引用格式

韦慧玲 , 罗陆锋 , 卢清华 , 陈为林 , 王金海 . 绳牵引并联机构的技术研究现状与应用进展[J]. 科技导报, 2023 , 41(6) : 89 -107 . DOI: 10.3981/j.issn.1000-7857.2023.06.010

Abstract

The cable-driven parallel mechanism is a type of parallel robot that uses flexible cables instead of rigid links as the driving element. It has the advantages of fast movement speed, large carrying capacity, small chain inertia, large workspace and good environmental adaptability. It provides new ideas and means for solving engineering problems. Therefore, it has gradually become a research hotspot in the field of international parallel mechanisms in recent years. This article introduces the characteristics of the cable-driven parallel mechanism, and summarizes the technical research status and engineering application progress of the cable-driven parallel mechanism from the fields of material handling, astronomical observation, wind tunnel test, high-speed camera, motion simulation, limb rehabilitation, surgery, three-dimensional printing, etc. Then the development trends of cable-driven parallel mechanism are discussed.

参考文献

[1] 刘雄伟, 郑亚青, 林麒 . 应用于飞行器风洞试验的绳牵引并联机构技术综述[J]. 航空学报, 2004, 25(4): 393-400.
[2] Tang X Q. An overview of the development for cable-driven parallel manipulator[J]. Advances in Mechanical Engineering, 2014, doi: 10.1155/2014/823028.
[3] Qian S, Zi B, Shang W W, et al. A review on cable-driven parallel robots[J]. Chinese Journal of Mechanical Engineering, 2018, 31(66): 1-12.
[4] Albus J, Bostelman R, Dagalakis N. The NIST RoboCrane[J]. Journal of Robotic System, 1993, 10(5): 709-724.
[5] Lytle A M, Saidi K S, Bostelman R V, et al. Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: Experiences with the NIST RoboCrane[J]. Automation in Construction, 2004, 13(1): 101-118
[6] Duan B Y. A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis[J]. Mechatronics, 1999, 9(1): 53-64.
[7] Qiu Y Y, Duan B Y, Wei Q, et al. Optimal distribution of the cable tensions and structural vibration control of the cable-cabin flexible structure[J]. Structural Engineering and Mechanics, 2002, 14(1): 39-56.
[8] 仇原鹰. 大射电望远镜馈源支撑与指向跟踪系统的力学模型分析及实验研究[D]. 西安: 西安电子科技大学,2002.
[9] Zhu W B, Nan R D, Ren G X. Modeling of a feed support system for FAST[J]. Experimental Astronomy, 2004, 17(1-3): 177-184.
[10] Kozak K, Zhou Q, Wang J S. Static analysis of cabledriven manipulators with non-negligible cable mass [J]. IEEE Transactions on Robotics, 2006, 22(3): 425-433.
[11] Shao Z F, Tang X Q, Wang L P, et al. Dynamic modeling and wind vibration control of the feed support system in FAST[J]. Nonlinear Dynamics, 2012, 67(2): 965-985.
[12] Du J L, Bao H, Cui C Z, et al. Nonlinear PD control of a long-span cable-supporting manipulator in quasi-static motion[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 2012, 134(1): 11022-11030.
[13] Li H, Yao R. Optimal orientation planning and control deviation estimation on FAST cable-driven parallel robot [J]. Advances in Mechanical Engineering, 2014(716097):1-7.
[14] Tang X Q, Chai X M, Tang L W, et al. Accuracy synthesis of a multi-level hybrid positioning mechanism for the feed support system in FAST[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(5): 565-575.
[15] 李辉, 潘高峰 . 驱动链高速轴断裂所致 FAST索牵引并联机器人的冲击振动仿真分析[J]. 振动与冲击, 2017, 36(12): 75-82.
[16] Cone L L. Skycam: An aerial robotic camera system[J]. Byte, 1985, 10(10): 122-132.
[17] Tempel P, Schnelle F, Pott A, et al. Design and programming for cable-driven parallel robots in the German pavilion at the EXPO[J]. Machines, 2015, 3(3): 223-241.
[18] Goodwin K. RoboCrane construction of bridges[J]. Transportation Research Record Journal of the Transportation Research Board, 1997, 1575(1): 42-46.
[19] Lytle A M, Saidi K S. NIST research in autonomous construction[J]. Autonomous Robots, 2007, 22(3): 211-221.
[20] Yamamoto M, Yanai N, Mohri A. Inverse dynamics and control of crane-type manipulator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Pis⁃cataway: IEEE, 1999: 1228-1233.
[21] Heyden T, Woernle C. Dynamics and flatness-based control of a kinematically undetermined cable suspension manipulator[J]. Multibody System Dynamics, 2006,16(2): 155-177.
[22] Merlet J P, Daney D. Kinematic analysis of a spatial four-wire driven parallel crane without constraining mechanism[C]//Computational Kinematics. Berlin: Springer, 2009: 1-8.
[23] Scalera L, Gallina P, Seriani S, et al. Cable-based robotic crane (CBRC): Design and implementation of overhead traveling cranes based on variable radius drums[J]. IEEE Transactions on Robotics, 2018, 34(2): 474-485.
[24] O'Neill C, Asada H H. Safe tumbling of heavy objects using a two-cable crane[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1082-1089.
[25] 耿永锋 . 用于集装箱吊装的绳牵引并联起重设备的研究[D]. 上海: 上海海事大学, 2007.
[26] 郑亚青. 吊装绳牵引并联起重机器人的建模分析[J]. 华侨大学学报(自然科学版), 2009, 30(5): 496-501.
[27] 于兰, 郑亚青 . 3种构型的 6自由度绳牵引门式起重机器人的运动学位置逆解分析[J]. 华侨大学学报(自然科学版), 2012, 33(2): 125-128.
[28] 郑飞杰 . 基于模糊 PID 的 2 自由度门式起重机器人轨迹跟踪控制研究[D]. 泉州: 华侨大学, 2013.
[29] 黄佳怡, 陈柏, 胡忠文, 等 . 一种柔索驱动太空舱外搬运 机 器 人 研 究 [J]. 机 械 科 学 与 技 术 , 2012, 31(11): 1748-1753.
[30] Zi B, Lin J, Qian S. Localization, obstacle avoidance planning and control of a cooperative cable parallel robot for multiple mobile cranes[J]. Robotics and Computer Integrated Manufacturing, 2015, 34: 105-123.
[31] 訾斌, 周斌, 钱森. 双台汽车起重机柔索并联装备变幅运动下的动力学建模与分析[J]. 机械工程学报, 2017, 53(7): 55-61.
[32] Ramy R. Dynamics of the arecibo radio telescope[D]. Montreal: McGill University, 2005.
[33] Taghirad H D, Nahon M A. Forward kinematics of a macro-micro parallel manipulator[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatron⁃ics. Piscataway: IEEE, 2007: 1-6.
[34] Meunier G, Boulet B, Nahon M. Control of an overactuated cable-driven parallel mechanism for a radio telescope application[J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1043-1054.
[35] 李辉, 朱文白, 潘高峰 . 500 m 口径球面射电望远镜进舱缆线连接机构的设计及其静力学分析[J]. 机械工程学报, 2010, 46(7): 7-15.
[36] 李辉, 朱文白, 潘高峰 . 基于索力优化的 FAST 柔索牵引并联机构的静力学分析[J]. 工程力学, 2011, 28(4): 185-193.
[37] Yin J N, Jiang P, Yao R. An approximately analytical solution method for the cable-driven parallel robot in FAST[J]. Research in Astronomy and Astrophysics, 2021, 21(2): 1-11.
[38] 姚蕊, 唐晓强, 李铁民, 等 . 大型射电望远镜馈源定位3T 索牵引并联机构分析与设计[J]. 机械工程学报, 2007, 43(11): 105-109.
[39] Yao R, Tang X Q, Wang J S, et al. Dimensional optimization design of the four-cable-driven parallel manipulator in FAST[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(6): 932-941.
[40] Shao Z F, Tang X Q, Chen X, et al. Driving force analysis for the secondary adjustable system in FAST[J]. Robotica, 2011, 29: 903-915.
[41] Tang X Q, Zhu W B, Sun C H, et al. Similarity model of feed support system for FAST[J]. Experimental Astronomy, 2011, 29(3): 177-187.
[42] Liu Z H, Tang X Q, Shao Z F, et al. Research on longitudinal vibration characteristic of the six-cable-driven parallel manipulator in FAST[J]. Advances in Mechanical Engineering, 2013: 547416-547416.
[43] Tang X Q, Shao Z F. Trajectory generation and tracking control of a multi-level hybrid support manipulator in FAST[J]. Mechatronics, 2013, 23(8): 1113-1122.
[44] 刘志远, 陈炼, 邵珠峰, 等. FAST馈源支撑系统的终端精度保证研究[J]. 机械工程学报, 2017, 53(17): 50-59.
[45] 段宝岩, 仇原鹰, 张福顺, 等 . 提高超大型天线索支撑结构刚度的方法及其对电性能的影响[J]. 机械工程学报, 2009, 45(3): 138-143.
[46] 仇原鹰, 陈杰, 段宝岩, 等 . 大型射电望远镜悬挂馈源结构的非线性力学分析[J]. 西安电子科技大学学报(自然科学版), 2000, 27(4): 452-455.
[47] 王文利, 段宝岩. 悬索式球面射电望远镜FAST 馈源舱的动态检测[J]. 西安电子科技大学学报(自然科学版), 2000, 27(5): 563-566.
[48] 苏玉鑫, 段宝岩, 彭勃, 等 . 大射电望远镜轨迹跟踪糊学习控制[J]. 自动化学报, 2002, 28(6): 1039-1042.
[49] 苏玉鑫, 段宝岩, 彭勃, 等 . 大射电望远镜馈源轨迹跟踪的模糊预测控制[J]. 控制与决策, 2002, 17(1): 85-88.
[50] 孙欣, 段宝岩. 巨型柔性Stewart平台解空间、工作空间的研究及悬索张力的优化分析[J] . 机械工程学报, 2002, 38(2): 16-21.
[51] 訾斌, 段宝岩, 杜敬利. 超大型天线馈源舱柔索支撑结构动力学分析与跟踪控制[J]. 控制理论与应用, 2007, 24(6): 938-942.
[52] Abbott F, Reed W. A new 'free-flight' mount system for high-speed wind-tunnel flutter models[C]//Proceedings of Symposium on Aeroelastic and Dynamic Modeling Technology. 1963: 169-206.
[53] Thomas L, Bojan V, Ari G. A six degrees of freedom dynamic wire-driven traverse[J]. Aerospace, 2016, 3(2): 1-16.
[54] Lafourcade P, Llibre M, Reboulet C. Design of a parallel wire-driven manipulator for wind tunnels[C]//Proceedings of the WORKSHOP on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators. Quebec City: Laval University, 2002: 187-194.
[55] Lafourcaed P. Study of parallel manipulators with cables, design of an active suspension for wind tunnel[D].Paris: Paris Graduate School of Economics, Statistics and Finance, 2004: 22-29.
[56] Bruckmann T, Hiller M, Schramm D. An active suspension system for simulation of ship maneuvers in wind tunnels[M]. Amsterdam: Springer, 2010: 537-544.
[57] 郑亚青, 林麒, 刘雄伟. 低速风洞绳牵引并联支撑系统的机构与模型姿态控制方案设计[J]. 航空学报, 2005, 26(6): 774-778.
[58] 郑亚青, 林麒, 刘雄伟. 低速风洞绳牵引并联支撑系统的运动学参数标定[J]. 中国机械工程, 2006, 17(6): 551-558.
[59] 郑 亚 青 , 焦 少 妮 , 杨 永 柏 . 低 速 风 洞 层 流 风 场 中WDPSS-8 机器人系统索系流固耦合效应的动静力特性分析[J]. 中国机械工程, 2013, 24(13): 1765-1772.
[60] 黄琴, 郑亚青, 林麒 . 6 自由度绳牵引并联机构飞行器模型单自由度振荡运动的动力学分析[J]. 工程力学, 2010, 27(10): 230-234.
[61] Xiao Y W, L Qi, Zheng Y Q, et al. Model aerodynamic tests with a wire-driven parallel suspension system in low-speed wind tunnel[J]. Chinese Journal of Aeronau⁃tics, 2010, 23(4): 393-400.
[62] 王晓光, 马少宇, 彭苗娇, 等 . 绳牵引并联机器人弹性变形对动平台位姿精度的影响[J]. 计算力学学报, 2016, 33(3): 306-312.
[63] 彭苗娇, 王晓光, 林麒. 风洞试验WDPR支撑牵引绳与模型耦合振动研究[J]. 振动工程学报, 2017, 30(1): 140-148.
[64] 冀洋锋, 林麒, 彭苗娇, 等 . 绳系并联支撑机构的绳迟滞效应及影响实验研究[J]. 工程力学, 2019, 36(11): 212-221.
[65] 刘树青, 吴洪涛 . 一种用于风洞的新型柔索驱动并联机构设计[J]. 南京理工大学学报, 2004, 28(6): 601-605.
[66] 姚裕, 吴洪涛 . 3-DOF 转动柔索驱动风洞机构的力雅可比矩阵[J]. 南京航空航天大学学报, 2011, 43(1): 75-78.
[67] Vincent T L. Stabilization for film and broadcast cameras [J]. IEEE Control Systems Magazine, 2008, 28(1): 20-25.
[68] 钱小韵. 北京奥运会上的特种摄垂直像机[J]. 现代电视技术, 2009(6): 127-129.
[69] Spidercan GmbH [EB/OL]. [2022-05-01]. http://www.spidercam.tv/.
[70] Gordievsky V. Design and control of a robotic cable-suspended camera system for operation in 3-D industrial environment[D]. Cambridge: Massachusetts Institute of Technology, 2008.
[71] 于亮亮, 仇原鹰, 苏宇. 高速柔索牵引摄像机器人动力工作空间研究[J]. 工程力学, 2013, 30(11): 245-250.
[72] 苏宇, 仇原鹰, 王龙, 等 . 高速柔索牵引并联摄像机器人冗余驱动力优化求解[J]. 西安电子科技大学学报, 2014, 41(2): 90-96.
[73] Liu P, Qiu Y Y, Su Y. A new hybrid force-position measure approach on the stability for a camera robot[J]. Proceedings of the Institution of Mechanical Engineers, PartC: Journal of Mechanical Engineering Science, 2016, 230(14): 2508-2516.
[74] Wei H L, Qiu Y Y, Yang J. An approach to evaluate stability for cable-based parallel camera robots with hybrid tension-stiffness properties[J]. International Journal of Advanced Robotic Systems, 2015, 12: 185.
[75] 韦慧玲, 仇原鹰, 盛英. 一种柔索牵引摄像机器人的运动控制策略与稳定性研究[J].振动与冲击, 2017, 36(9):93-100.
[76] Wei H L, Qiu Y Y, Sheng Y. On the cable pseudo-drag problem of cable-driven parallel camera robots at high speeds[J]. Robotica, 2019, 37(10): 1695-1709.
[77] Morizono T, Kurahashi K, Kawamura S. Analysis and control of a force display system driven by parallel wire mechanism[J]. Robotica, 1998, 16: 551-563.
[78] Tadokoro S, Murao Y, Hiller M, et al. A motion base with 6-DOF by parallel cable drive architecture[J]. IEEE-ASME Transactions on Mechatronics, 2002, 7(2): 115-123.
[79] Mroz G. Design and prototype of a parallel, wire-actuated robot[D]. Ontario: Dissertation of Queen's University, 2003.
[80] Miermeister P, Lachele M, Boss R, et al. The CableRobot simulator large scale motion platform based on cable robot technology[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. Piscataway: IEEE, 2016: 3024-3029.
[81] 张立勋, 刘攀, 王克义. 基于绳索牵引的航天员机能训练机器人虚拟重力控制[J]. 机器人, 2010, 32(4): 454-458.
[82] 邹宇鹏, 张立勋, 李来禄 .多模式柔索驱动航天员训练机器人力控制[J]. 宇航学报, 2015, 36(5): 566-573.
[83] Cui Z W, Tang X Q, Hou S H, et al. Calculation and analysis of constant stiffness space for redundant cabledriven parallel robots[J]. IEEE Access, 2019, 7: 75407-75419.
[84] Castelli G, Ottaviano E. Modelling, simulation and testing of a reconfigurable cable-based parallel manipulator as motion aiding system[J]. Applied Bionics and Biomechanics, 2015, 7(4): 253-268.
[85] Ying M, Xin J, Geetanjali G D, et al. Human movement training with a cable driven ARm EXoskeleton (CAREX) [J]. IEEE Transactions on Neural Systems and Rehabili⁃tation Engineering, 2015, 23(1): 84-92.
[86] Kuan J Y, Pasch K A, Herr H M, et al. A high-performance cable-drive module for the development of wearable devices[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3): 1238-1248.
[87] Huang H Y, Farkhatdinov I, Arami A, et al. Cable-driven robotic interface for lower limb neuromechanics identification[J]. IEEE Transactions on Biomedical Engineering, 2019, 68(2): 461-469.
[88] Hamida I B, Laribi M A, Mlika A, et al. Multi-objective optimal design of a cable driven parallel robot for rehabilitation tasks[J]. Mechanism and Machine Theory, 2021 (156): 104141.
[89] 王克义, 张立勋, 孟浩. 1R2T绳索牵引并联康复机器人绳索弹性研究[J]. 南京理工大学学报, 2010, 34(5): 602-607.
[90] 刘攀, 张立勋, 王克义, 等 . 绳索牵引康复机器人的动力学建模与控制[J]. 哈尔滨工程大学学报, 2009, 28(7): 811-815.
[91] Wang Y L, Wang K Y, Wang W L, et al. Appraise and analysis of dynamical stability of cable-driven lower limb rehabilitation training robot[J]. Journal of Mechanical Science and Technology, 2019, 33(11): 5461-5472.
[92] Wang Y L, Wang K Y, Wang K C, et al. Safety evaluation and experimental study of a new bionic muscle cable-driven lower limb rehabilitation robot[J]. Sensors, 2020, 20(24): 1-20.
[93] Zi B, Yin G G, Zhang D. Design and optimization of a hybrid-driven waist rehabilitation robot[J]. Sensors, 2016, 16(12): 1-15.
[94] Cui X, Chen W H, Jin X, et al. Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance[J]. IEEE/ ASME Transactions on Mechatronics, 2017, 22(1): 161-172.
[95] Chen W H, Li Z Y, Cui X, et al. Mechanical design and kinematic modeling of a cable-driven arm exoskeleton incorporating inaccurate human limb anthropomorphic parameters[J]. Sensors, 2019, 19(20): 1-13.
[96] Li X M, Yang Q, Song R. Performance-based hybrid control of a cable-driven upper-limb rehabilitation robot [J]. IEEE Transactions on Bio-Medical Engineering,2020, 68(4): 1351-1359.
[97] Shi K, Song A G, Li Y, et al. A cable-driven three-dof wrist rehabilitation exoskeleton with improved performance[J]. Frontiers in Neurorobotics, 2021, 15: 664062.
[98] Wang H S, Zhang R X, Chen W D, et al. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: Preclinical tests in animals[J]. Surgical Endoscopy, 2017, 37: 3152-3158.
[99] Wang H S, Wang C, Chen W D, et al. Three-dimensional dynamics for cable-driven soft manipulator[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1): 18-28.
[100] Xue R F, Ren B Y, Yan Z Y, et al. A cable-pulley system modeling based position compensation control for a laparoscope surgical robot[J]. Mechanism and Ma⁃chine Theory, 2017, 118: 283-299.
[101] Qi F, Ju F, Bai D M, et al. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery[J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2018, 232(2): 135-148.
[102] Qi F, Ju F, Bai D M, et al. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2018, 14(6): e1932.
[103] Qi F, Ju F, Bai D M, et al. Kinematic analysis and navigation method of a cable-driven continuum robot used for minimally invasive surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15(4): e2007.
[104] Wang W J, Yu L T, Yang J. Toward force detection of a cable-driven micromanipulator for a surgical robot based on disturbance observer[J]. Mechanical Sciences, 2017, 8(2): 323-335.
[105] Yu L T, Wang W J, Zhang F F. External force sensing based on cable tension changes in minimally invasive surgical micromanipulators[J]. IEEE Access, 2018, 6: 5362-5373.
[106] Yan Y S, Yu L T, Li C S, et al. UKF-based motion estimation of cable-driven forceps for robot-assisted surgical system[J]. IEEE Access, 2020, 8: 94912-94922.
[107] Kim M C, Kim E S, Park J O, et al. Robotic localization based on planar cable robot and hall sensor array applied to magnetic capsule endoscope[J]. Sensors, 2020, 20(20): 1-18.
[108] Eric B, Clement G. Large-scale 3D printing with a cable-suspended robot[J]. Additive Manufacturing, 2015,7: 27-44.
[109] Izard J B, Dubor A, Herve P E, et al. Large-scale 3D printing with cable-driven parallel robots[J]. Construction Robotics, 2017, 1(1): 69-76.
[110] Qian S, Bao K L, Zi B, et al. Kinematic calibration of a cable-driven parallel robot for 3D printing[J]. Sensors, 2018, 18(9): 1-22.
[111] Zi B, Wang N, Qian S, et al. Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer[J]. Mechanism and Machine Theory, 2019, 132: 207-222.
[112] Tho T P, Thinh N T. Using a cable-driven parallel robot with applications in 3D concrete printing[J]. Applied Sciences, 2021, 11(2): 1-23.
[113] Abel V D, Harish T M, Rao R B. Design and modelling of a cable driven cart-rail robot for farm automation[C]//International Conference on Intelligent Computing, Instrumentation and Control Technologies. Piscataway: IEEE, 2017: 1248-1253.
[114] Ya X, Pal J F, Volkan I. Design and evaluation of a novel cable-driven gripper with perception capabilities for strawberry picking robots[C]//IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 7384-7391.
[115] Nguyen D T, Nguyen T T. Design of cable measuring system of a robot spraying pesticides in agricultural farm[C]//2019 International Conference on System Science and Engineering. Piscataway: IEEE, 2019: 577-580.
[116] Vasileios T, Dionysios B, Kyriakos-Nikos P, et al. Development of an integrated IoT-based greenhouse control three-device robotic system[J]. Agronomy, 2021, 11 (2): 1-16.
[117] Pott A, Mutherich H, Kraus W, et al. Cable-driven parallel robots for industrial applications: The IPAnema system family[C]//2013 44th International Symposium on Robotics. Piscataway: IEEE, 2013: 1-6.
[118] Miermeister P, Kraus W, Winkler B, et al. Cable-driven robots for the rapid deployment of fully automated material handling solutions[C]//International Symposium on Robotics. Piscataway: IEEE, 2014: 1-6.
[119] Mattern H, Bruckmann T, Spengler A, et al. Simulation of automated construction using wire robots[C]//Winter Simulation Conference. Piscataway: IEEE, 2016: 3302-3313.
[120] Koo S, Ficht G, García G M, et al. Robolink feeder: Reconfigurable bin-picking and feeding with a lightweight cable-driven manipulator[C]//13th IEEE International Conference on Automation Science and Engineering (CASE). Piscataway: IEEE, 2017: 41-48.
[121] Jordan B L, Batalin M A, Kaiser W J. NIMS RD: A rapidly deployable cable based robot[C]//IEEE International Conference on Robotics & Automation. Piscataway: IEEE, 2007: 144-150.
[122] Borgstrom P H, Jordan B L, Batalin M A, et al. Fieldtests of a redundantly actuated cable-driven robot for environmental sampling applications[C]//IEEE International Conference on Automation Science & Engineering. Piscataway: IEEE, 2009: 615-620.
[123] Borgstrom P H. Novel cable-driven robotic platforms and algorithms for environmental sensing applications [D]. Berkeley: University of California, 2009.
[124] Bosscher P, Williams R L, Tummino M. A concept for rapidly-deployable cable robot search and rescue systems[C]//ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. New York: ASME, 2005: 1-10.
[125] Merlet J P, Daney D. A portable, modular parallel wire crane for rescue operations[C]//IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2010: 2834-2839.
[126] Nurahmi L, Pramujati B, Caro S, et al. Dimension synthesis of suspended eight cables-driven parallel robot for search-and-rescue operation[C]//2017 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation. Piscataway: IEEE, 2017: 237-241.
[127] 江晓玲. 外墙清洗绳牵引并联工作平台的机构设计与控制[D]. 泉州: 华侨大学, 2012.
[128] 张永德, 姜金刚, 张舒, 等. 柔索驱动的玻璃幕墙清洗机器人研制及实验研究[J]. 仪器仪表学报, 2013, 34(3): 494-501.
[129] Shao Z F, Xie G Q, Zhang Z K, et al. Design and analysis of the cable-driven parallel robot for cleaning exterior wall of buildings[J]. International Journal of Advanced Robotic Systems, 2021, 18(1): 1-11.
[130] Wang T, You Z H, Song W, et al. Dynamic analysis of an underwater cable-driven manipulator with a fluidpower buoyancy regulation system[J]. Micromachines, 2020, 11(12): 1-14.
[131] Rodriguez-Barroso A, Saltaren R. Passive reconfigurable end effector for underwater simulation on humanoids[J]. Mechanism and Machine Theory, 2021, 163(1): 104387.
[132] Qiu C L, Wu Z X, Kong S H, et al. An underwater micro cable-driven pan-tilt binocular vision system with spherical refraction calibration[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5010813.
[133] Ueland E, Sauder T, Skjetne R. Optimal actuator placement for real-time hybrid model testing using cabledriven parallel robots[J]. Journal of Marine Science and Engineering, 2021, 9(2): 1-23.
[134] Bosscher P, Williams R L, Bryson L S, et al. Cablesuspended robotic contour crafting system[J]. Automation in Construction, 2007, 17(1): 45-55.
[135] Hu R B, Iturralde K, Linner T, et al. A simple framework for the cost-benefit analysis of single-task construction robots based on a case study of a cable-driven facade installation robot[J]. Buildings, 2021, 11(1): 1-17.
[136] Bruckmann T, Boumann R. Simulation and optimization of automated masonry construction using cable robots[J]. Advanced Engineering Informatics, 2021, 50: 101388.
[137] Bruckmann T, Sturm C, Fehlberg L, et al. An energyefficient wire-based storage and retrieval system[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway: IEEE, 2013: 631-636.
[138] Bruckmann T, Reichert C, Ji H. Energy consumption reduction of a cable-driven storage and retrieval system [C]//Springer Proceedings in Advanced Robotics. Berlin: Springer, 2018: 383-391.
[139] Rasheed T, Long P, Marquez-Gamez D, et al. Available wrench set for planar mobile cable-driven parallel robots[C]//2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 962-967.
[140] Salah B, Janeh O, Noche B, et al. Design and simulation based validation of the control architecture of a stacker crane based on an innovative wire-driven robot [J]. Robotics and Computer-Integrated Manufacturing, 2017, 44: 117-128.
[141] Sane S P. Enhancing insect flight research with a labon-cables[J]. Science Robotics, 2020, 5(45): eabd7941.
[142] Rémi P, Mélanie J, Mohamed B, et al. Automatic tracking of free-flying insects using a cable-driven robot[J]. Science Robotics, 2020, 5(43): eabb2890.
[143] Lv W, Tao L M, Ji Z N. Sliding mode control of cabledriven redundancy parallel robot with 6 DOF based on cable-length sensor feedback[J]. Mathematical Problems in Engineering, 2017, 2017(1): 1-21.
[144] Edoardo I, Daniele M, Marco C. A deployable cabledriven parallel robot with large rotational capabilities for laser-scanning applications[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4140-4147.
[145] Tao G, Liu Z, Ye C. A novel unit mechanism for serial head-tail alternatively supported robot[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 235(20):5132-5145.
[146] Seriani S, Gallina P, Wedler A. A modular cable robot for inspection and light manipulation on celestial bodies [J]. Acta Astronautica, 2016, 123: 145-153.
[147] Wang M, Dong X, Ba W, et al. Design, modelling and validation of a novel extra slender continuum robot for in-situ inspection and repair in aeroengine[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102054.
[148] Huang Y, Chen Y, Zhang X, et al. A novel cable-driven 7-DOF anthropomorphic manipulator[J]. IEEE/ ASME Transactions on Mechatronics, 2021, 26(4): 2174-2185.
文章导航

/