[1] 刘雄伟, 郑亚青, 林麒 . 应用于飞行器风洞试验的绳牵引并联机构技术综述[J]. 航空学报, 2004, 25(4): 393-400.
[2] Tang X Q. An overview of the development for cable-driven parallel manipulator[J]. Advances in Mechanical Engineering, 2014, doi: 10.1155/2014/823028.
[3] Qian S, Zi B, Shang W W, et al. A review on cable-driven parallel robots[J]. Chinese Journal of Mechanical Engineering, 2018, 31(66): 1-12.
[4] Albus J, Bostelman R, Dagalakis N. The NIST RoboCrane[J]. Journal of Robotic System, 1993, 10(5): 709-724.
[5] Lytle A M, Saidi K S, Bostelman R V, et al. Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: Experiences with the NIST RoboCrane[J]. Automation in Construction, 2004, 13(1): 101-118
[6] Duan B Y. A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis[J]. Mechatronics, 1999, 9(1): 53-64.
[7] Qiu Y Y, Duan B Y, Wei Q, et al. Optimal distribution of the cable tensions and structural vibration control of the cable-cabin flexible structure[J]. Structural Engineering and Mechanics, 2002, 14(1): 39-56.
[8] 仇原鹰. 大射电望远镜馈源支撑与指向跟踪系统的力学模型分析及实验研究[D]. 西安: 西安电子科技大学,2002.
[9] Zhu W B, Nan R D, Ren G X. Modeling of a feed support system for FAST[J]. Experimental Astronomy, 2004, 17(1-3): 177-184.
[10] Kozak K, Zhou Q, Wang J S. Static analysis of cabledriven manipulators with non-negligible cable mass [J]. IEEE Transactions on Robotics, 2006, 22(3): 425-433.
[11] Shao Z F, Tang X Q, Wang L P, et al. Dynamic modeling and wind vibration control of the feed support system in FAST[J]. Nonlinear Dynamics, 2012, 67(2): 965-985.
[12] Du J L, Bao H, Cui C Z, et al. Nonlinear PD control of a long-span cable-supporting manipulator in quasi-static motion[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 2012, 134(1): 11022-11030.
[13] Li H, Yao R. Optimal orientation planning and control deviation estimation on FAST cable-driven parallel robot [J]. Advances in Mechanical Engineering, 2014(716097):1-7.
[14] Tang X Q, Chai X M, Tang L W, et al. Accuracy synthesis of a multi-level hybrid positioning mechanism for the feed support system in FAST[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(5): 565-575.
[15] 李辉, 潘高峰 . 驱动链高速轴断裂所致 FAST索牵引并联机器人的冲击振动仿真分析[J]. 振动与冲击, 2017, 36(12): 75-82.
[16] Cone L L. Skycam: An aerial robotic camera system[J]. Byte, 1985, 10(10): 122-132.
[17] Tempel P, Schnelle F, Pott A, et al. Design and programming for cable-driven parallel robots in the German pavilion at the EXPO[J]. Machines, 2015, 3(3): 223-241.
[18] Goodwin K. RoboCrane construction of bridges[J]. Transportation Research Record Journal of the Transportation Research Board, 1997, 1575(1): 42-46.
[19] Lytle A M, Saidi K S. NIST research in autonomous construction[J]. Autonomous Robots, 2007, 22(3): 211-221.
[20] Yamamoto M, Yanai N, Mohri A. Inverse dynamics and control of crane-type manipulator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Pis⁃cataway: IEEE, 1999: 1228-1233.
[21] Heyden T, Woernle C. Dynamics and flatness-based control of a kinematically undetermined cable suspension manipulator[J]. Multibody System Dynamics, 2006,16(2): 155-177.
[22] Merlet J P, Daney D. Kinematic analysis of a spatial four-wire driven parallel crane without constraining mechanism[C]//Computational Kinematics. Berlin: Springer, 2009: 1-8.
[23] Scalera L, Gallina P, Seriani S, et al. Cable-based robotic crane (CBRC): Design and implementation of overhead traveling cranes based on variable radius drums[J]. IEEE Transactions on Robotics, 2018, 34(2): 474-485.
[24] O'Neill C, Asada H H. Safe tumbling of heavy objects using a two-cable crane[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1082-1089.
[25] 耿永锋 . 用于集装箱吊装的绳牵引并联起重设备的研究[D]. 上海: 上海海事大学, 2007.
[26] 郑亚青. 吊装绳牵引并联起重机器人的建模分析[J]. 华侨大学学报(自然科学版), 2009, 30(5): 496-501.
[27] 于兰, 郑亚青 . 3种构型的 6自由度绳牵引门式起重机器人的运动学位置逆解分析[J]. 华侨大学学报(自然科学版), 2012, 33(2): 125-128.
[28] 郑飞杰 . 基于模糊 PID 的 2 自由度门式起重机器人轨迹跟踪控制研究[D]. 泉州: 华侨大学, 2013.
[29] 黄佳怡, 陈柏, 胡忠文, 等 . 一种柔索驱动太空舱外搬运 机 器 人 研 究 [J]. 机 械 科 学 与 技 术 , 2012, 31(11): 1748-1753.
[30] Zi B, Lin J, Qian S. Localization, obstacle avoidance planning and control of a cooperative cable parallel robot for multiple mobile cranes[J]. Robotics and Computer Integrated Manufacturing, 2015, 34: 105-123.
[31] 訾斌, 周斌, 钱森. 双台汽车起重机柔索并联装备变幅运动下的动力学建模与分析[J]. 机械工程学报, 2017, 53(7): 55-61.
[32] Ramy R. Dynamics of the arecibo radio telescope[D]. Montreal: McGill University, 2005.
[33] Taghirad H D, Nahon M A. Forward kinematics of a macro-micro parallel manipulator[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatron⁃ics. Piscataway: IEEE, 2007: 1-6.
[34] Meunier G, Boulet B, Nahon M. Control of an overactuated cable-driven parallel mechanism for a radio telescope application[J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1043-1054.
[35] 李辉, 朱文白, 潘高峰 . 500 m 口径球面射电望远镜进舱缆线连接机构的设计及其静力学分析[J]. 机械工程学报, 2010, 46(7): 7-15.
[36] 李辉, 朱文白, 潘高峰 . 基于索力优化的 FAST 柔索牵引并联机构的静力学分析[J]. 工程力学, 2011, 28(4): 185-193.
[37] Yin J N, Jiang P, Yao R. An approximately analytical solution method for the cable-driven parallel robot in FAST[J]. Research in Astronomy and Astrophysics, 2021, 21(2): 1-11.
[38] 姚蕊, 唐晓强, 李铁民, 等 . 大型射电望远镜馈源定位3T 索牵引并联机构分析与设计[J]. 机械工程学报, 2007, 43(11): 105-109.
[39] Yao R, Tang X Q, Wang J S, et al. Dimensional optimization design of the four-cable-driven parallel manipulator in FAST[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(6): 932-941.
[40] Shao Z F, Tang X Q, Chen X, et al. Driving force analysis for the secondary adjustable system in FAST[J]. Robotica, 2011, 29: 903-915.
[41] Tang X Q, Zhu W B, Sun C H, et al. Similarity model of feed support system for FAST[J]. Experimental Astronomy, 2011, 29(3): 177-187.
[42] Liu Z H, Tang X Q, Shao Z F, et al. Research on longitudinal vibration characteristic of the six-cable-driven parallel manipulator in FAST[J]. Advances in Mechanical Engineering, 2013: 547416-547416.
[43] Tang X Q, Shao Z F. Trajectory generation and tracking control of a multi-level hybrid support manipulator in FAST[J]. Mechatronics, 2013, 23(8): 1113-1122.
[44] 刘志远, 陈炼, 邵珠峰, 等. FAST馈源支撑系统的终端精度保证研究[J]. 机械工程学报, 2017, 53(17): 50-59.
[45] 段宝岩, 仇原鹰, 张福顺, 等 . 提高超大型天线索支撑结构刚度的方法及其对电性能的影响[J]. 机械工程学报, 2009, 45(3): 138-143.
[46] 仇原鹰, 陈杰, 段宝岩, 等 . 大型射电望远镜悬挂馈源结构的非线性力学分析[J]. 西安电子科技大学学报(自然科学版), 2000, 27(4): 452-455.
[47] 王文利, 段宝岩. 悬索式球面射电望远镜FAST 馈源舱的动态检测[J]. 西安电子科技大学学报(自然科学版), 2000, 27(5): 563-566.
[48] 苏玉鑫, 段宝岩, 彭勃, 等 . 大射电望远镜轨迹跟踪糊学习控制[J]. 自动化学报, 2002, 28(6): 1039-1042.
[49] 苏玉鑫, 段宝岩, 彭勃, 等 . 大射电望远镜馈源轨迹跟踪的模糊预测控制[J]. 控制与决策, 2002, 17(1): 85-88.
[50] 孙欣, 段宝岩. 巨型柔性Stewart平台解空间、工作空间的研究及悬索张力的优化分析[J] . 机械工程学报, 2002, 38(2): 16-21.
[51] 訾斌, 段宝岩, 杜敬利. 超大型天线馈源舱柔索支撑结构动力学分析与跟踪控制[J]. 控制理论与应用, 2007, 24(6): 938-942.
[52] Abbott F, Reed W. A new 'free-flight' mount system for high-speed wind-tunnel flutter models[C]//Proceedings of Symposium on Aeroelastic and Dynamic Modeling Technology. 1963: 169-206.
[53] Thomas L, Bojan V, Ari G. A six degrees of freedom dynamic wire-driven traverse[J]. Aerospace, 2016, 3(2): 1-16.
[54] Lafourcade P, Llibre M, Reboulet C. Design of a parallel wire-driven manipulator for wind tunnels[C]//Proceedings of the WORKSHOP on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators. Quebec City: Laval University, 2002: 187-194.
[55] Lafourcaed P. Study of parallel manipulators with cables, design of an active suspension for wind tunnel[D].Paris: Paris Graduate School of Economics, Statistics and Finance, 2004: 22-29.
[56] Bruckmann T, Hiller M, Schramm D. An active suspension system for simulation of ship maneuvers in wind tunnels[M]. Amsterdam: Springer, 2010: 537-544.
[57] 郑亚青, 林麒, 刘雄伟. 低速风洞绳牵引并联支撑系统的机构与模型姿态控制方案设计[J]. 航空学报, 2005, 26(6): 774-778.
[58] 郑亚青, 林麒, 刘雄伟. 低速风洞绳牵引并联支撑系统的运动学参数标定[J]. 中国机械工程, 2006, 17(6): 551-558.
[59] 郑 亚 青 , 焦 少 妮 , 杨 永 柏 . 低 速 风 洞 层 流 风 场 中WDPSS-8 机器人系统索系流固耦合效应的动静力特性分析[J]. 中国机械工程, 2013, 24(13): 1765-1772.
[60] 黄琴, 郑亚青, 林麒 . 6 自由度绳牵引并联机构飞行器模型单自由度振荡运动的动力学分析[J]. 工程力学, 2010, 27(10): 230-234.
[61] Xiao Y W, L Qi, Zheng Y Q, et al. Model aerodynamic tests with a wire-driven parallel suspension system in low-speed wind tunnel[J]. Chinese Journal of Aeronau⁃tics, 2010, 23(4): 393-400.
[62] 王晓光, 马少宇, 彭苗娇, 等 . 绳牵引并联机器人弹性变形对动平台位姿精度的影响[J]. 计算力学学报, 2016, 33(3): 306-312.
[63] 彭苗娇, 王晓光, 林麒. 风洞试验WDPR支撑牵引绳与模型耦合振动研究[J]. 振动工程学报, 2017, 30(1): 140-148.
[64] 冀洋锋, 林麒, 彭苗娇, 等 . 绳系并联支撑机构的绳迟滞效应及影响实验研究[J]. 工程力学, 2019, 36(11): 212-221.
[65] 刘树青, 吴洪涛 . 一种用于风洞的新型柔索驱动并联机构设计[J]. 南京理工大学学报, 2004, 28(6): 601-605.
[66] 姚裕, 吴洪涛 . 3-DOF 转动柔索驱动风洞机构的力雅可比矩阵[J]. 南京航空航天大学学报, 2011, 43(1): 75-78.
[67] Vincent T L. Stabilization for film and broadcast cameras [J]. IEEE Control Systems Magazine, 2008, 28(1): 20-25.
[68] 钱小韵. 北京奥运会上的特种摄垂直像机[J]. 现代电视技术, 2009(6): 127-129.
[69] Spidercan GmbH [EB/OL]. [2022-05-01]. http://www.spidercam.tv/.
[70] Gordievsky V. Design and control of a robotic cable-suspended camera system for operation in 3-D industrial environment[D]. Cambridge: Massachusetts Institute of Technology, 2008.
[71] 于亮亮, 仇原鹰, 苏宇. 高速柔索牵引摄像机器人动力工作空间研究[J]. 工程力学, 2013, 30(11): 245-250.
[72] 苏宇, 仇原鹰, 王龙, 等 . 高速柔索牵引并联摄像机器人冗余驱动力优化求解[J]. 西安电子科技大学学报, 2014, 41(2): 90-96.
[73] Liu P, Qiu Y Y, Su Y. A new hybrid force-position measure approach on the stability for a camera robot[J]. Proceedings of the Institution of Mechanical Engineers, PartC: Journal of Mechanical Engineering Science, 2016, 230(14): 2508-2516.
[74] Wei H L, Qiu Y Y, Yang J. An approach to evaluate stability for cable-based parallel camera robots with hybrid tension-stiffness properties[J]. International Journal of Advanced Robotic Systems, 2015, 12: 185.
[75] 韦慧玲, 仇原鹰, 盛英. 一种柔索牵引摄像机器人的运动控制策略与稳定性研究[J].振动与冲击, 2017, 36(9):93-100.
[76] Wei H L, Qiu Y Y, Sheng Y. On the cable pseudo-drag problem of cable-driven parallel camera robots at high speeds[J]. Robotica, 2019, 37(10): 1695-1709.
[77] Morizono T, Kurahashi K, Kawamura S. Analysis and control of a force display system driven by parallel wire mechanism[J]. Robotica, 1998, 16: 551-563.
[78] Tadokoro S, Murao Y, Hiller M, et al. A motion base with 6-DOF by parallel cable drive architecture[J]. IEEE-ASME Transactions on Mechatronics, 2002, 7(2): 115-123.
[79] Mroz G. Design and prototype of a parallel, wire-actuated robot[D]. Ontario: Dissertation of Queen's University, 2003.
[80] Miermeister P, Lachele M, Boss R, et al. The CableRobot simulator large scale motion platform based on cable robot technology[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. Piscataway: IEEE, 2016: 3024-3029.
[81] 张立勋, 刘攀, 王克义. 基于绳索牵引的航天员机能训练机器人虚拟重力控制[J]. 机器人, 2010, 32(4): 454-458.
[82] 邹宇鹏, 张立勋, 李来禄 .多模式柔索驱动航天员训练机器人力控制[J]. 宇航学报, 2015, 36(5): 566-573.
[83] Cui Z W, Tang X Q, Hou S H, et al. Calculation and analysis of constant stiffness space for redundant cabledriven parallel robots[J]. IEEE Access, 2019, 7: 75407-75419.
[84] Castelli G, Ottaviano E. Modelling, simulation and testing of a reconfigurable cable-based parallel manipulator as motion aiding system[J]. Applied Bionics and Biomechanics, 2015, 7(4): 253-268.
[85] Ying M, Xin J, Geetanjali G D, et al. Human movement training with a cable driven ARm EXoskeleton (CAREX) [J]. IEEE Transactions on Neural Systems and Rehabili⁃tation Engineering, 2015, 23(1): 84-92.
[86] Kuan J Y, Pasch K A, Herr H M, et al. A high-performance cable-drive module for the development of wearable devices[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3): 1238-1248.
[87] Huang H Y, Farkhatdinov I, Arami A, et al. Cable-driven robotic interface for lower limb neuromechanics identification[J]. IEEE Transactions on Biomedical Engineering, 2019, 68(2): 461-469.
[88] Hamida I B, Laribi M A, Mlika A, et al. Multi-objective optimal design of a cable driven parallel robot for rehabilitation tasks[J]. Mechanism and Machine Theory, 2021 (156): 104141.
[89] 王克义, 张立勋, 孟浩. 1R2T绳索牵引并联康复机器人绳索弹性研究[J]. 南京理工大学学报, 2010, 34(5): 602-607.
[90] 刘攀, 张立勋, 王克义, 等 . 绳索牵引康复机器人的动力学建模与控制[J]. 哈尔滨工程大学学报, 2009, 28(7): 811-815.
[91] Wang Y L, Wang K Y, Wang W L, et al. Appraise and analysis of dynamical stability of cable-driven lower limb rehabilitation training robot[J]. Journal of Mechanical Science and Technology, 2019, 33(11): 5461-5472.
[92] Wang Y L, Wang K Y, Wang K C, et al. Safety evaluation and experimental study of a new bionic muscle cable-driven lower limb rehabilitation robot[J]. Sensors, 2020, 20(24): 1-20.
[93] Zi B, Yin G G, Zhang D. Design and optimization of a hybrid-driven waist rehabilitation robot[J]. Sensors, 2016, 16(12): 1-15.
[94] Cui X, Chen W H, Jin X, et al. Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance[J]. IEEE/ ASME Transactions on Mechatronics, 2017, 22(1): 161-172.
[95] Chen W H, Li Z Y, Cui X, et al. Mechanical design and kinematic modeling of a cable-driven arm exoskeleton incorporating inaccurate human limb anthropomorphic parameters[J]. Sensors, 2019, 19(20): 1-13.
[96] Li X M, Yang Q, Song R. Performance-based hybrid control of a cable-driven upper-limb rehabilitation robot [J]. IEEE Transactions on Bio-Medical Engineering,2020, 68(4): 1351-1359.
[97] Shi K, Song A G, Li Y, et al. A cable-driven three-dof wrist rehabilitation exoskeleton with improved performance[J]. Frontiers in Neurorobotics, 2021, 15: 664062.
[98] Wang H S, Zhang R X, Chen W D, et al. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: Preclinical tests in animals[J]. Surgical Endoscopy, 2017, 37: 3152-3158.
[99] Wang H S, Wang C, Chen W D, et al. Three-dimensional dynamics for cable-driven soft manipulator[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1): 18-28.
[100] Xue R F, Ren B Y, Yan Z Y, et al. A cable-pulley system modeling based position compensation control for a laparoscope surgical robot[J]. Mechanism and Ma⁃chine Theory, 2017, 118: 283-299.
[101] Qi F, Ju F, Bai D M, et al. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery[J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2018, 232(2): 135-148.
[102] Qi F, Ju F, Bai D M, et al. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2018, 14(6): e1932.
[103] Qi F, Ju F, Bai D M, et al. Kinematic analysis and navigation method of a cable-driven continuum robot used for minimally invasive surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15(4): e2007.
[104] Wang W J, Yu L T, Yang J. Toward force detection of a cable-driven micromanipulator for a surgical robot based on disturbance observer[J]. Mechanical Sciences, 2017, 8(2): 323-335.
[105] Yu L T, Wang W J, Zhang F F. External force sensing based on cable tension changes in minimally invasive surgical micromanipulators[J]. IEEE Access, 2018, 6: 5362-5373.
[106] Yan Y S, Yu L T, Li C S, et al. UKF-based motion estimation of cable-driven forceps for robot-assisted surgical system[J]. IEEE Access, 2020, 8: 94912-94922.
[107] Kim M C, Kim E S, Park J O, et al. Robotic localization based on planar cable robot and hall sensor array applied to magnetic capsule endoscope[J]. Sensors, 2020, 20(20): 1-18.
[108] Eric B, Clement G. Large-scale 3D printing with a cable-suspended robot[J]. Additive Manufacturing, 2015,7: 27-44.
[109] Izard J B, Dubor A, Herve P E, et al. Large-scale 3D printing with cable-driven parallel robots[J]. Construction Robotics, 2017, 1(1): 69-76.
[110] Qian S, Bao K L, Zi B, et al. Kinematic calibration of a cable-driven parallel robot for 3D printing[J]. Sensors, 2018, 18(9): 1-22.
[111] Zi B, Wang N, Qian S, et al. Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer[J]. Mechanism and Machine Theory, 2019, 132: 207-222.
[112] Tho T P, Thinh N T. Using a cable-driven parallel robot with applications in 3D concrete printing[J]. Applied Sciences, 2021, 11(2): 1-23.
[113] Abel V D, Harish T M, Rao R B. Design and modelling of a cable driven cart-rail robot for farm automation[C]//International Conference on Intelligent Computing, Instrumentation and Control Technologies. Piscataway: IEEE, 2017: 1248-1253.
[114] Ya X, Pal J F, Volkan I. Design and evaluation of a novel cable-driven gripper with perception capabilities for strawberry picking robots[C]//IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 7384-7391.
[115] Nguyen D T, Nguyen T T. Design of cable measuring system of a robot spraying pesticides in agricultural farm[C]//2019 International Conference on System Science and Engineering. Piscataway: IEEE, 2019: 577-580.
[116] Vasileios T, Dionysios B, Kyriakos-Nikos P, et al. Development of an integrated IoT-based greenhouse control three-device robotic system[J]. Agronomy, 2021, 11 (2): 1-16.
[117] Pott A, Mutherich H, Kraus W, et al. Cable-driven parallel robots for industrial applications: The IPAnema system family[C]//2013 44th International Symposium on Robotics. Piscataway: IEEE, 2013: 1-6.
[118] Miermeister P, Kraus W, Winkler B, et al. Cable-driven robots for the rapid deployment of fully automated material handling solutions[C]//International Symposium on Robotics. Piscataway: IEEE, 2014: 1-6.
[119] Mattern H, Bruckmann T, Spengler A, et al. Simulation of automated construction using wire robots[C]//Winter Simulation Conference. Piscataway: IEEE, 2016: 3302-3313.
[120] Koo S, Ficht G, García G M, et al. Robolink feeder: Reconfigurable bin-picking and feeding with a lightweight cable-driven manipulator[C]//13th IEEE International Conference on Automation Science and Engineering (CASE). Piscataway: IEEE, 2017: 41-48.
[121] Jordan B L, Batalin M A, Kaiser W J. NIMS RD: A rapidly deployable cable based robot[C]//IEEE International Conference on Robotics & Automation. Piscataway: IEEE, 2007: 144-150.
[122] Borgstrom P H, Jordan B L, Batalin M A, et al. Fieldtests of a redundantly actuated cable-driven robot for environmental sampling applications[C]//IEEE International Conference on Automation Science & Engineering. Piscataway: IEEE, 2009: 615-620.
[123] Borgstrom P H. Novel cable-driven robotic platforms and algorithms for environmental sensing applications [D]. Berkeley: University of California, 2009.
[124] Bosscher P, Williams R L, Tummino M. A concept for rapidly-deployable cable robot search and rescue systems[C]//ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. New York: ASME, 2005: 1-10.
[125] Merlet J P, Daney D. A portable, modular parallel wire crane for rescue operations[C]//IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2010: 2834-2839.
[126] Nurahmi L, Pramujati B, Caro S, et al. Dimension synthesis of suspended eight cables-driven parallel robot for search-and-rescue operation[C]//2017 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation. Piscataway: IEEE, 2017: 237-241.
[127] 江晓玲. 外墙清洗绳牵引并联工作平台的机构设计与控制[D]. 泉州: 华侨大学, 2012.
[128] 张永德, 姜金刚, 张舒, 等. 柔索驱动的玻璃幕墙清洗机器人研制及实验研究[J]. 仪器仪表学报, 2013, 34(3): 494-501.
[129] Shao Z F, Xie G Q, Zhang Z K, et al. Design and analysis of the cable-driven parallel robot for cleaning exterior wall of buildings[J]. International Journal of Advanced Robotic Systems, 2021, 18(1): 1-11.
[130] Wang T, You Z H, Song W, et al. Dynamic analysis of an underwater cable-driven manipulator with a fluidpower buoyancy regulation system[J]. Micromachines, 2020, 11(12): 1-14.
[131] Rodriguez-Barroso A, Saltaren R. Passive reconfigurable end effector for underwater simulation on humanoids[J]. Mechanism and Machine Theory, 2021, 163(1): 104387.
[132] Qiu C L, Wu Z X, Kong S H, et al. An underwater micro cable-driven pan-tilt binocular vision system with spherical refraction calibration[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5010813.
[133] Ueland E, Sauder T, Skjetne R. Optimal actuator placement for real-time hybrid model testing using cabledriven parallel robots[J]. Journal of Marine Science and Engineering, 2021, 9(2): 1-23.
[134] Bosscher P, Williams R L, Bryson L S, et al. Cablesuspended robotic contour crafting system[J]. Automation in Construction, 2007, 17(1): 45-55.
[135] Hu R B, Iturralde K, Linner T, et al. A simple framework for the cost-benefit analysis of single-task construction robots based on a case study of a cable-driven facade installation robot[J]. Buildings, 2021, 11(1): 1-17.
[136] Bruckmann T, Boumann R. Simulation and optimization of automated masonry construction using cable robots[J]. Advanced Engineering Informatics, 2021, 50: 101388.
[137] Bruckmann T, Sturm C, Fehlberg L, et al. An energyefficient wire-based storage and retrieval system[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway: IEEE, 2013: 631-636.
[138] Bruckmann T, Reichert C, Ji H. Energy consumption reduction of a cable-driven storage and retrieval system [C]//Springer Proceedings in Advanced Robotics. Berlin: Springer, 2018: 383-391.
[139] Rasheed T, Long P, Marquez-Gamez D, et al. Available wrench set for planar mobile cable-driven parallel robots[C]//2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 962-967.
[140] Salah B, Janeh O, Noche B, et al. Design and simulation based validation of the control architecture of a stacker crane based on an innovative wire-driven robot [J]. Robotics and Computer-Integrated Manufacturing, 2017, 44: 117-128.
[141] Sane S P. Enhancing insect flight research with a labon-cables[J]. Science Robotics, 2020, 5(45): eabd7941.
[142] Rémi P, Mélanie J, Mohamed B, et al. Automatic tracking of free-flying insects using a cable-driven robot[J]. Science Robotics, 2020, 5(43): eabb2890.
[143] Lv W, Tao L M, Ji Z N. Sliding mode control of cabledriven redundancy parallel robot with 6 DOF based on cable-length sensor feedback[J]. Mathematical Problems in Engineering, 2017, 2017(1): 1-21.
[144] Edoardo I, Daniele M, Marco C. A deployable cabledriven parallel robot with large rotational capabilities for laser-scanning applications[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4140-4147.
[145] Tao G, Liu Z, Ye C. A novel unit mechanism for serial head-tail alternatively supported robot[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 235(20):5132-5145.
[146] Seriani S, Gallina P, Wedler A. A modular cable robot for inspection and light manipulation on celestial bodies [J]. Acta Astronautica, 2016, 123: 145-153.
[147] Wang M, Dong X, Ba W, et al. Design, modelling and validation of a novel extra slender continuum robot for in-situ inspection and repair in aeroengine[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102054.
[148] Huang Y, Chen Y, Zhang X, et al. A novel cable-driven 7-DOF anthropomorphic manipulator[J]. IEEE/ ASME Transactions on Mechatronics, 2021, 26(4): 2174-2185.