专题:2022年科技热点回眸

2022年无人机热点回眸

  • 段海滨 ,
  • 何杭轩 ,
  • 赵彦杰 ,
  • 王寅 ,
  • 霍梦真 ,
  • 牛轶峰 ,
  • 范彦铭 ,
  • 朱纪洪 ,
  • 袁莞迈 ,
  • 邓亦敏 ,
  • 李轩 ,
  • 罗德林
展开
  • 1. 北京航空航天大学自动化科学与电气工程学院, 仿生自主飞行系统研究组, 北京 100083;
    2. 中国电子科技集团公司智能科技研究院, 北京 100086;
    3. 南京航空航天大学航天学院, 南京 210016;
    4. 国防科技大学智能科学学院, 长沙 410073;
    5. 中国航空工业集团公司沈阳飞机设计研究所, 沈阳 110035;
    6. 清华大学精密仪器系, 北京 100084;
    7. 鹏城实验室数学与理论部, 虚拟现实基础研究室, 深圳 518000;
    8. 厦门大学航空航天学院, 厦门 361102
段海滨,教授,研究方向为无人机仿生自主控制、计算机仿生视觉和仿生智能计算,电子信箱:hbduan@buaa.edu.cn

收稿日期: 2022-12-01

  修回日期: 2023-01-05

  网络出版日期: 2023-02-10

基金资助

科技部科技创新2030-"新一代人工智能"重大项目(2018AAA0102403);国家自然科学基金项目(91948204,U19B2029,61876187,T2121003,U20B2071)

Review of technological hotspots of unmanned aerial vehicle in 2022

  • DUAN Haibin ,
  • HE Hangxuan ,
  • ZHAO Yanjie ,
  • WANG Yin ,
  • Huo Mengzhen ,
  • NIU Yifeng ,
  • FAN Yanming ,
  • ZHU Jihong ,
  • YUAN Wanmai ,
  • DENG Yimin ,
  • LI Xuan ,
  • LUO Delin
Expand
  • 1. Bio-inspired Autonomous Flight System (BAFS) Research Group, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
    2. Artificial Intelligence Institute of China Electronics Technology Group Corporation, Beijing 100086, China;
    3. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    4. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
    5. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110035, China;
    6. Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
    7. Virtual Reality Fundamental Research Laboratory, Department of Mathematics and Theories, Peng Cheng Laboratory, Shenzhen 518000, China;
    8. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China

Received date: 2022-12-01

  Revised date: 2023-01-05

  Online published: 2023-02-10

摘要

2022年,无人机技术研究加速推进,并取得了一系列突破性进展。从无人机政策法规、设计实现、关键技术、人机交互、反无人机等方面回顾了2022年无人机领域热点和动向。随着视觉导航、人工智能技术的进步与普及,无人机综合能力不断提升,应用领域持续扩大,无人机集群关键技术、平台建设与执行任务样式不断完善,自主化、智能化、跨域化、集群化、体系化是当前无人机的技术发展趋势。

本文引用格式

段海滨 , 何杭轩 , 赵彦杰 , 王寅 , 霍梦真 , 牛轶峰 , 范彦铭 , 朱纪洪 , 袁莞迈 , 邓亦敏 , 李轩 , 罗德林 . 2022年无人机热点回眸[J]. 科技导报, 2023 , 41(1) : 215 -229 . DOI: 10.3981/j.issn.1000-7857.2023.01.016

Abstract

Unmanned aerial vehicle (UAV) developed fast and made a series of breakthroughs in 2022. This paper summarizes and analyses UAV hotspots and trends in 2022 in terms of UAV regulations, design and realization, key technologies, humanrobot interaction and anti-UAV technologies. With the progress and popularization of visual navigation technology and artificial intelligence technology, the comprehensive capability of UAVs continued to improve and their application fields kept on expanding. Key technologies, platform construction and task-executing styles of UAV swarm were constantly improving, and UAV swarm became more automated, intelligent, cross-domain, clusterized and systematized.

参考文献

[1] 崔勇平, 邢清华.从俄乌战争看无人机对野战防空的挑战和启示[J].航天电子对抗, 2022, 38(4):1-3.
[2] Chen J, Sun J, Wang G.From unmanned systems to autonomous intelligent systems[J].Engineering, 2022, 12(5):16-19.
[3] AINonline.EASA proposes rules for urban VTOL air taxis[EB/OL].(2022-06-30)[2022-11-26].https://www.ainonline.com/aviation-news/general-aviation/2022-06-30/easa-proposes-rules-urban-vtol-air-taxis.
[4] GOV.UK.Advancing airborne autonomy:Use of commercial drones in the UK[EB/OL].(2022-07-18)[2022-11-d:PDF.pdf26].https://www.gov.uk/government/publications/advancing-airborne-autonomy-use-of-commercial-drones-inthe-uk.
[5] NASA.NASA tests advanced air mobility automation concepts with Sikorsky and DARPA[EB/OL].(2022-08-16)[2022-11-26].https://www.nasa.gov/feature/nasa-tests-advanced-air-mobility-automation-concepts-with-sikorskyand-darpa.
[6] Shepardson D.U.S.proposes rules to advance flying taxi operations[EB/OL].(2022-06-30)[2022-11-26].https://news.yahoo.com/u-proposes-rules-advance-flying-14355-d:PDF.pdf2763.html.
[7] USNI News.Navy to deploy up to four cargo drones on an aircraft carrier this year[EB/OL].(2022-04-12)[2022-11-d:PDF.pdf26].https://news.usni.org/2022/04/12/navy-to-deployfour-cargo-drones-on-an-aircraft-carrier-this-year#:~:te-xt=A%20logistics%20Unmanned%20Air%20System%20-d:PDF.pdf%28UAS%29%20prototype%2C%20called,with%20the% 20NAWCAD%20experimentation%20office%20told% 20USNI%20News.
[8] 中国电子工业标准化技术协会.信息技术无人集群术语:T/CESA 1192-2022[S].北京:中国标准出版社, 2022.
[9] 国务院国有资产监督管理委员会.中方牵头制定的第二项无人机领域国际标准正式发布[EB/OL].(2022-08-18)[2022-11-26].http://www.sasac.gov.cn/n2588025/n2588124/c25782843/content.html.
[10] 中国民用航空局."十四五" 航空物流发展专项规划[EB/OL].(2022-02-16)[2022-11-26].http://www.caac.gov.cn/XXGK/XXGK/FZGH/202202/t20220216_211785.html.
[11] 交通运输标准化信息系统.无人机物流配送运行要求[EB/OL].(2022-09-13)[2022-11-26].https://jtst.mot.gov.cn/hb/search/stdHBDetailed?id=deb836eba355a49a-d:PDF.pdf38de6a57ec830ec3.
[12] 中华人民共和国交通运输部.交通运输部国家标准化管理委员会关于印发《交通运输智慧物流标准体系建设指南》的通知[EB/OL].(2022-10-24)[2022-11-26].https://xxgk.mot.gov.cn/2020/jigou/kjs/202210/t2022102-d:PDF.pdf4_3699366.html.
[13] 深圳市无人机行业协会.无人机及其物流、应急应用领域政策汇编[EB/OL].(2022-08-08)[2022-11-26].http://www.szuavia.org/news_cen.php?id=6216.
[14] Kwak B, Shintake J, Zhang L, et al.Towards edible drones for rescue missions:Design and flight of nutritional wings[J].arXiv preprint arXiv:2211.04149, 2022.
[15] Schiano F, Kornatowski P, Cencetti L, et al.Reconfigurable drone system for rransportation of parcels with variable mass and size[J].IEEE Robotics and Automation Letters, 2022, 7(4):12150-12157.
[16] 研制成功, 飞行汽车来了[EB/OL].(2022-11-19)[2022-d:PDF.pdf11-26].https://mp.weixin.qq.com/s/ubn-euoIW6Qcb471-d:PDF.pdfnqOuxw.
[17] Zhang K, Chermprayong P, Xiao F, et al.Aerial additive manufacturing with multiple autonomous robots[J].Nature, 2022, 609:709-717.
[18] Fuller S, Yu Z, Talwekar Y.A gyroscope-free visual-inertial flight control and wind sensing system for 10-mg robots[J].Science Robotics, 2022, 7(72):8184.
[19] Stewart W, Ajanic E, Muller M, et al.How to swoop and grasp like a bird with a passive claw for a high-speed grasping[J].IEEE/ASME Transactions on Mechatronics, 2022, 27(5):3527.
[20] Zufferey R, Tormo-Barbero J, Feliu-Talegón D, et al.How ornithopters can perch autonomously on a branch[J].Nature Communications, 2022, 13:7713.
[21] Bai S, He Q, Chirarattananon P.A bioinspired revolvingwing drone with passive attitude stability and efficient hovering flight[J].Science Robotics, 2022, 7(66):5913.
[22] Li L, Wang S, Zhang Y, et al.Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces[J].Science Robotics, 2022, 7(66):6695.
[23] 北京航空航天大学.新世界纪录!北航创扑翼式无人机 单次 充电 飞行 最长 时间[EB/OL].(2022-10-20)[2022-11-26].https://mp.weixin.qq.com/s/XlsdhvBuQAnym1x5E4tHjQ.
[24] Wu X, He W, Wang Q, et al.A long-endurance flapping-wing robot based on mass distribution and energy consume method[J].IEEE Transactions on Industrial Electronics, 2022, doi:10.1109/TIE.2022.3213905.
[25] Chen A, Song B, Wang Z, et al.A novel actuation strategy for an agile bioinspired FWAV performing a morphing-coupled wingbeat pattern[J].IEEE Transactions on Robotics, 2022, doi:10.1109/TRO.2022.3189812.
[26] Tian Y, How J.Spectral sparsification for communication-efficient collaborative rotation and translation estimation[DB/OL].arXiv preprint:2210.05020v2, 2022.
[27] Rosinol A, Violette A, Abate M, et al.Kimera:From SLAM to spatial perception with 3D dynamic scene graphs[J].International Journal of Robotics Research, 2021, 40(12/14):1510-1546.
[28] Tian Y, Chang Y, Arias F, et al.Kimera-multi:Robust, distributed, dense metric-semantic SLAM for multi-robot systems[J].IEEE Transactions on Robotics, 2022, 38(4):2022-2038.
[29] Liu X, Prabhu A, Cladera F, et al.Active metric-semantic mapping by multiple aerial robots[DB/OL].arXiv preprint:2209.08465v3, 2022.
[30] Miller I, Cladera F, Smith T, et al.Stronger together:Air-ground robotic collaboration using semantics[J].arXiv preprint arXiv:2206.14289v1, 2022.
[31] Polizzi V, Hewitt R, Hidalgo-Carri'o J, et al.Data-efficient collaborative decentralized thermal-inertial cdometry[J].IEEE Robotics and Automation Letters, 2022, 7(4):10681-10688.
[32] Li X, Wu L, Niu Y, et al.Multi-target association for UAVs based on triangular topological sequence[J].Drones, 2022, 6:119.
[33] Lin B, Wu L, Niu Y.End-to-end vision-based cooperative target geo-localization for multiple micro UAVs[J].Journal of Intelligent & Robotic Systems, 2022, 106:13.
[34] Zhu P, Wen L, Du D, et al.Detection and tracking meet drones challenge[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(11):7380-7399.
[35] Liu S, Li X, Lu H, et al.Multi-object tracking meets moving UAV[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans, USA:IEEE, 2022:8876-8885.
[36] Zhang L, Gao F, Deng F, et al.Distributed estimation of a layered architecture for collaborative air-ground target geolocation in outdoor environments[J].IEEE Transactions on Industrial Electronics, 2022, 70(3):2822-2832.
[37] O'Connell M, Shi G, Shi X, et al.Neural-fly enables rapid learning for agile flight in strong winds[J].Science Robotics, 2022, 7(66):597.
[38] Tagliabue A, How J.Output feedback tube MPC-guided data augmentation for robust, efficient sensorimotor policy learning[DB/OL].arXiv preprint:2210.10127v1, 2022.
[39] Wang Z, Gross R, Zhao S.Aerobatic Tic-Toc control of planar quadcopters via reinforcement learning[J].IEEE Robotics and Automation Letters, 2022, 7(2):2140-d:PDF.pdf2147.
[40] Li J, Ning Z, He S, et al.Three-dimensional bearing-only target following via observability-enhanced helical guidance[J].IEEE Transactions on Robotics, 2022, doi:10.1109/TRO.2022.3218268.
[41] Foehn P, Kaufmann E, Romero A, et al.Agilicious:Open-source and open-hardware agile quadrotor for vision-based flight[J].Science Robotics, 2022, 7(67):6259.
[42] Zhang S, Yang Y, Wang X, et al.Modeling and dynamic analysis of a distributed propulsion tilt-rotor aircraft[C]//AIAA AVIATION 2022 Forum.Chicago, USA:AIAA, 2022.
[43] Zhu J H, Yang Y J, Wang X Y, et al.Attitude control of a novel tilt-wing UAV in hovering flight[J].Science China Information Science, 2022, doi:10.1007/s11432-022-d:PDF.pdf3605-5.
[44] Tordesillas J, How J.Deep-panther:Learning-based perception-aware trajectory planner in dynamic environments[DB/OL].arXiv preprint:2209.01268v1, 2022.
[45] Nakka Y, Chung S.Trajectory optimization of chanceconstrained nonlinear stochastic systems for motion planning under uncertainty[J].IEEE Transactions on Robotics, 2022, doi:10.1109/TRO.2022.3197072.
[46] Romero A, Foehn S, Scaramuzza D.Model predictive contouring control for time-optimal quadrotor flight[J].IEEE Transactions on Robotics, 2022, doi:10.1109/TRO.2022.3173711.
[47] Lipschitz L, Liu X, Tao Y, et al.Experiments in adaptive replanning for fast autonomous flight in forests[J].arXiv preprint arXiv:2203.01370v1, 2022.
[48] Gosrich W, Mayya S, Narayan S, et al.Multi-robot coordination and cooperation with task precedence relationships[DB/OL].arXiv preprint:2209.14417v1, 2022.
[49] Zhou X, Wen X, Wang Z, et al.Swarm of micro flying robots in the wild[J].Science Robotics, 2022, 7(66):5954.
[50] Liang Y, Yang Y, Zhao Y.Multi-area complete coverage with fixed-wing UAV swarms based on modified ant colony algorithm[C]//5th IEEE International Conference on Unmanned Systems.Guangzhou, China:IEEE, 2022:732-737.
[51] Li Z, Tnunay H, Zhao S, et al.Bearing-only formation control with pre-specified convergence time[J].IEEE Transactions on Cybernetics, 2022, 52(1):620-629.
[52] Sui W, Yang Y, Yuan W, et al.Fixed-time formation tracking control for multi-UAV system via nonsingular terminal sliding mode approach[C]//International Conference on Guidance, Navigation and Control.Harbin, China:Springer, 2022:1045.
[53] Yuan Y, Xu X, Duan H, et al.Eagle vision-based coordinate landing control framework of unmanned aerial vehicles on an unmanned surface vehicle[J].Guidance, Navigation and Control, 2022, 2(4):2250023.
[54] 无人系统技术.智能无人系统创造未来|2022国际自主 无人 系统 大会(ICAUS 2022)顺利 召开[EB/OL].(2022-02-25)[2022-11-26].https://mp.weixin.qq.com/s/Z1v4-nkPyjvj_EFzxWZM8Q.
[55] 重磅赛事, 即将开启!|2022年 "爱生杯" 智能无人系统 应用 挑战 赛[EB/OL].(2022-02-25)[2022-11-26].https://mp.weixin.qq.com/s?__biz=MzA5MTM4MTU4MA==&mid=2652044135&idx=2&sn=65adb6841597653d4-d:PDF.pdf3baaebae0e83853&chksm=8b9b1144bcec9852760eb4a-d:PDF.pdf08f7a6827537bf5fe64d2a4e02b5a0a2a14480960240928-d:PDF.pdfa7f445&scene=27.
[56] 2022第五届无人系统大会在广东珠海开幕[EB/OL].(2022-12-28)[2022-12-29].https://proapi.jingjiribao.cn/detail.html?id=435600.
[57] 央视军事.空军广发"英雄帖"![EB/OL].(2022-11-09)[2022-11-26].https://mp.weixin.qq.com/s/DA7V4J0BByQh2l98eUSKlg.
[58] IUSC国际无人蜂群技术大赛."智领群蜂2022" 国际无人蜂群技术大赛在珠海航展震撼发布[EB/OL].(2022-d:PDF.pdf11-09)[2022-11-26].https://mp.weixin.qq.com/s/Yq44KUy7IiJbwfjKJKg9TA.
[59] Özbek M M, Yıldırım S, Aksoy M, et al.Harfang3D dogfight sandbox:A reinforcement learning research platform for the customized control tasks of fighter aircrafts[J].arXiv preprint arXiv:2210.07282, 2022.
[60] 周文卿, 朱纪洪, 匡敏驰, 等.基于预知博弈树的多无人机群智协同空战算法[J].中国科学:技术科学, 2022, 52, doi:10.1360/SST-2021-0294.
[61] Zhang D, Duan H, Zeng Z.Leader-follower interactive potential for target enclosing of perception-limited UAV groups[J].IEEE Systems Journal, 2022, 16(1):856-867.
[62] Ruan W, Duan H, Deng Y.Autonomous maneuver decisions via transfer learning pigeon-inspired optimization for UCAVs in dogfight engagements[J].IEEE/CAA Journal of Automatica Sinica, 2022, 9(9):1639-1657.
[63] Duan H, Lei Y, Xia J, et al.Autonomous maneuver decision for unmanned aerial vehicle via improved pigeoninspired optimization[J].IEEE Transactions on Aerospace and Electronic Systems, 2022, doi:10.1109/TAES.2022.3221691.
[64] Fan Z, Xu Y, Kang Y, et al.Air combat maneuver decision method based on A3C deep reinforcement learning[J].Machines, 2022, 10:1033.
[65] Gong Z, Xu Y, Luo D.Cooperative air combat maneuvering confrontation based on multi-agent reinforcement learning[J].Unmanned Systems, 2022, 10(3):1-14.
[66] Shahid S, Zhen Z, Javaid U, et al.Offense-defense distributed decision making for swarm vs.swarm confrontation while attacking the aircraft carriers[J].Drones, 2022, 6:271.
[67] General Atomics.GA-ASI Pairs Avenger with virtual UAS to demo autonomous search and follow[EB/OL].(2022-02-25)[2022-11-26].https://www.ga.com/ga-asipairs-avenger-with-virtual-uas-to-demo-autonomoussearch-follow.
[68] Sterenfeld E.DARPA, Sikorsky complete first autonomous Black Hawk flight without backup pilots inside[EB/OL].(2022-02-08)[2022-11-26].https://insidedefense.com/daily-news/darpa-sikorsky-complete-first-autonomous-black-hawk-flight-without-backup-pilots-inside.
[69] BAE Systems.BAE Systems demonstrates manned-unmanned teaming capabilities in flight test[EB/OL].(2022-03-01)[2022-11-26].https://www.baesystems.com/en-us/article/bae-systems-demonstrates-manned-unmanned-teaming-capabilities-in-flight-test.
[70] Cooper N.John Clark:Lockheed eyeing distributed manned-unmanned teaming concept for air force[EB/OL].(2022-07-18)[2022-11-26].https://blog.executivebiz.com/2022/07/lockheed-eyeing-distributed-mannedunmanned-teaming-concept-for-air-force/#:~:text=by%20Naomi%20Cooper%20July%2018%2C%202022%2C%2011%3A59%20am, with% 20future% 20autonomous% 20systems% 2C% 20Defense% 20News% 20reported% 20Friday.
[71] ZAKER."有人""无人" 协同作战!这场演练相当燃![EB/OL].(2022-06-29)[2022-11-26].http://app.myzaker.com/news/article.php?pk=62bbb8921bc8e069520000-d:PDF.pdf1b.
[72] 国防科大.无人机、无人车联合"输出", 这场毕业综合演 练超 硬核 ![EB/OL].(2022-04-06)[2022-11-26].http://www.81.cn/2022zt/2022-04/06/content_10151052.htm.
[73] Roth G, Schulte A.Experimental evaluation of missionplanning support in multi-user manned-unmanned teaming applications with shared unmanned systems[J].Human Foctors in Robots, Drones and Unmanned Systems, 2022, 57:46-53.
[74] Deka A, Sycara K, Walker P, et al.Human vs.deep neural network performance at a leader identification task[C]//65th Annual Meeting of the Human Factors and Ergonomics Society, Sage, 2021:1152-1156.
[75] Deka A, Sycara K, Walker P, et al.The robustness of human advantage in swarm leader identification[C]//66th Annual Meeting of the Human Factors and Ergonomics Society, 2022:550-554.
[76] Huo M, Duan H, Zeng Z.Multicluster consensus for large-scale heterogenous manned/unmanned aerial team with random link failure via pinning Control[J].IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(12):4924-4928.
[77] Macchini M, Frogg J, Schinao F, et al.Does spontaneous motion lead to intuitive Body-Machine Interfaces? A fitness study of different body segments for wearable telerobotics[C]//31st IEEE International Conference on Robot and Human Interactive Communication.Napoli, Italy:IEEE, 2022:115-121.
[78] Dell'Agnola F, Jao P, Arza A, et al.Machine-learning based monitoring of cognitive workload in rescue missions with drones[J].IEEE Journal of Biomedical and Health Informatics, 2022, 26(9):4751-4762.
[79] Li H, Oguntola I, Hughes D, et al.Theory of mind modeling in search and rescue teams[C]//31st IEEE International Conference on Robot and Human Interactive Communication Napoli, Italy:IEEE, 2022:483-189.
[80] 这个紧迫的战场难题, 中国有了解决方案[EB/OL].(2022-11-06)[2022-11-26].https://m.thepaper.cn/baijiahao_20617539.
[81] 无人机.航天科工集团反无人机体系[EB/OL].(2022-d:PDF.pdf06-11)[2022-11-26].https://mp.weixin.qq.com/s/sLmmwnJAnOcdf3YgpNx6Xg.
[82] Manuel R.Liteye unveils man-portable counter-drone system[EB/OL].(2022-02-02)[2022-11-26].https://www.thedefensepost.com/2022/09/02/liteye-counter-uas/.
[83] Crumley B.Liteye Systems wins DoD's $12.1 million counter-drone deal[EB/OL].(2022-05-17)[2022-11-26].https://dronedj.com/2022/05/17/liteye-systems-wins-dods-12-1-million-counter-drone-deal/.
[84] Unmanned Airspace.Product discription[EB/OL].(2022-d:PDF.pdf06-11)[2022-11-26].https://www.unmannedairspace.info/c-uas-search/zaklady-mechaniczne-tarnow/.
[85] Inder Singh Bisht.BAE demonstrates APKWS effectiveness against fast drones[EB/OL].(2022-12-01)[2022-d:PDF.pdf12-09].https://www.thedefensepost.com/2022/12/01/baeapkws-fast-drones/.
[86] Tass.Russia's anti-drone gun capable of ‘stunning’ American UAVs undergoes tests[EB/OL].(2022-06-11)[2022-11-26].https://tass.com/defense/1530699.
[87] IDRW.EEL developing micro-missile for anti-drone operations[EB/OL].(2022-03-24)[2022-11-26].https://idrw.org/eel-developing-micro-missile-for-anti-droneoperations/.
[88] Zheng Y, Zheng C, Zhang X, et al.Detection, localization, and tracking of multiple MAVs with panoramic stereo camera networks[J].IEEE Transactions on Automation Science and Engineering, 2022, doi:10.1109/TASE.2022.3176294.
[89] Zhao J, Zhang J, Li D, et al.Vision-based anti-UAV detection and tracking[J].IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12):25323-25334.
[90] Dudczyk J, Czyba R, Skrzypczyk K.Multi-sensory data fusion in terms of UAV detection in 3D space[J].Sensors, 2022, 22:4323.
[91] Rudys S, Laučys A, Ragulis P, et al.Hostile UAV detection and neutralization using a UAV system[J].Drones, 2022, 6:250.
[92] Valianti P, Kolios P, Ellinas G.Energy-aware tracking and jamming rogue UAVs using a swarm of pursuer UAV agents[J].IEEE Systems Journal, 2022, doi:10.1109/JSYST.2022.3179632.
[93] 段海滨, 何杭轩, 赵彦杰, 等.2021年无人机热点回眸[J].科技导报, 2022, 40(1):215-227.
[94] 段海滨, 申燕凯, 赵彦杰, 等.2020年无人机热点回眸[J].科技导报, 2021, 39(1):233-247.
[95] 段海滨, 申燕凯, 赵彦杰, 等.2019年无人机热点回眸[J].科技导报, 2020, 38(1):170-187.
[96] 段海滨.无人机集群应用前景广阔[N].人民日报, 2022-7-13(15).
文章导航

/