大气污染与健康专题

气传花粉监测数据研究进展

  • 尹炤寅 ,
  • 刘燕 ,
  • 党冰 ,
  • 乔媛 ,
  • 张丰瑶 ,
  • 刘丹 ,
  • 欧阳昱晖
展开
  • 1. 北京城市气象研究院, 北京 100089;
    2. 北京市气候中心, 北京 100089;
    3. 北京市气象服务中心, 北京 100089;
    4. 北京市昌平区气象局, 北京 102200;
    5. 首都医科大学附属北京同仁医院, 北京 100176
尹炤寅,高级工程师,研究方向为气象、环境同人体健康的交叉影响,电子信箱:unpc1986@gmail.com

收稿日期: 2022-03-15

  修回日期: 2022-06-20

  网络出版日期: 2022-09-13

基金资助

北京市科技计划项目(Z191100009119013)

Progress of research based on the airborne pollen monitoring data

  • YIN Zhaoyin ,
  • LIU Yan ,
  • DANG Bing ,
  • QIAO Yuan ,
  • ZHANG Fengyao ,
  • LIU Dan ,
  • OUYANG Yuhui
Expand
  • 1. Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China;
    2. Beijing Municipal Climate Center, Beijing 100089, China;
    3. Beijing Meteorological Service Center, Beijing 100089, China;
    4. Changping District Meteorological Office of Beijing, Beijing 102200, China;
    5. Department of Allergy, Beijing Tongren Hospital, Capital University of Medical Science, Beijing 100176, China

Received date: 2022-03-15

  Revised date: 2022-06-20

  Online published: 2022-09-13

Supported by

 

摘要

综述了基于气传花粉监测数据的研究进展,结果发现,利用花粉观测数据可获取某地的花粉概况,进而绘制具有临床价值的花粉日历。但因其不包含病例信息,故需结合过敏人群特征修正影响浓度阈值。此外,通过分析暴露于不同环境下的患病风险,证实了防治花粉症十分依赖于洁净的空气。局地观测环境及采样器的安放位置对监测结果有极大影响,但整体而言,北半球大多数区域花粉季延长、花粉浓度增加,并可归因于气候变暖所致。为预测花粉关键要素在未来的变化,4大类模型被广泛应用,并取得较好的预测结果。但对于预测效果较差的部分(花粉浓度极值、复杂地形等),最优解决方法则是结合高分辨率的花粉监测数据进行订正。但是,由于缺乏低成本的自动监测设备,当前花粉监测数据的分辨率仍然较低,由此带来了一系列的数据和技术壁垒。建议该领域应将开发低成本的自动监测设备作为近期发展的重点,并以此建立标准化的观测体系。

本文引用格式

尹炤寅 , 刘燕 , 党冰 , 乔媛 , 张丰瑶 , 刘丹 , 欧阳昱晖 . 气传花粉监测数据研究进展[J]. 科技导报, 2022 , 40(15) : 49 -63 . DOI: 10.3981/j.issn.1000-7857.2022.15.006

Abstract

This paper reviews the research based on airborne pollen monitoring data and finds out the followings.1) a pollen profile can be obtained by using the data and then a pollen calendar with clinical value can be drawn,in which the concentration threshold should be modified based on the characteristics of allergic populations.Besides,it's confirmed that clean air is essential for preventing hay fever through analyzing the exposure risks in different environments.2) the local observation environment and the placement position of the sampler have a great influence on the monitoring results,but overall,the pollen season has been prolonged and the pollen concentration has increased in most regions of the north hemisphere,which can be attributed to climate warming.3) in order to predict the future changes of airborne pollen,four types of models are widely used and the prediction results are generally accurate.For the parts with poor prediction effect (extreme pollen concentration,complex terrain,etc.),the optimal solution is to combine high-resolution pollen monitoring data for correction.4) however,due to the lack of low-cost automatic monitoring equipment,the current resolution of pollen monitoring data is still low,which brings a series of data and technical barriers.Therefore,this paper believes that the development of low-cost automatic monitoring equipment should be the focus of recent development in this field,and that a standardized observation system should be established accordingly.

参考文献

[1] Wolf K L, Lam S T, Mckeen J K, et al. Urban trees and human health:A scoping review[J]. Journal of Environmental Research and Public Health, 2020, 17(12):4371-4401.
[2] 欧阳昱晖,张罗.花粉过敏的防御和治疗[J].中国耳鼻咽喉头颈外科, 2020, 27(4):177-179.
[3] 安羽三,欧阳昱晖.季节性过敏性鼻炎的研究现状[J].中国耳鼻咽喉头颈外科, 2020, 27(4):199-201.
[4] Awaya A, Kuroiwa Y. The relationship between annual airborne pollen levels and occurrence of all cancers, and lung, stomach, colorectal, pancreatic and breast cancers:A retrospective study from the National Registry Database of Cancer Incidence in Japan, 1975-2015[J]. International Journal of Environmental Research and Public Health, 2020, 17(11):3950.
[5] Stickley A, Sheng Ng C F, Konishi S, et al. Airborne pollen and suicide mortality in Tokyo, 2001-2011[J]. Environmental Research, 2017, 155:134-140.
[6] Cicco M E D, Ferrante G, Amato D, et al. Climate change and childhood respiratory health:A call to action for paediatricians[J]. Journal of Environmental Research and Public Health, 2020, 17(12):5344-5356.
[7] D'amato G, Chong-Neto H J, Monge Ortega O P, et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens[J]. International Journal of Environmental Research and Public Health, 2020, 75(9):2219-2228.
[8] Martínez-Bracero M, Alcázar P, Díaz de la Guardia C, et al. Pollen calendars:a guide to common airborne pollen in Andalusia[J]. Aerobiologia, 2015, 31(4):549-557.
[9] Katotomichelakis M, Nikolaidis C, Makris M, et al. The clinical significance of the pollen calendar of the Western Thrace/northeast Greece region in allergic rhinitis[J]. International Forum of Allergy&Rhinology, 2015, 5(12):1156-1163.
[10] Stix E, Ferretti M L. Pollen calendars of three locations in Western Germany[J]. Atlas European Des Pollens Allergisants, 1974:85-94.
[11] Adams-Groom B, Ambelas Skjøth C, Selby K, et al. Regional calendars and seasonal statistics for the United Kingdom's main pollen allergens[J]. Allergy, 2020, 75(6):1492-1494.
[12] Camacho I, Caeiro E, Nunes C, et al. Airborne pollen calendar of Portugal:A 15-year survey (2002-2017)[J]. Allergologia et Immunopathologia, 2020, 48(2):194-201.
[13] Lo F, Bitz C M, Battisti D S, et al. Pollen calendars and maps of allergenic pollen in North America[J]. Aerobiologia, 2019, 35(4):613-633.
[14] Šikoparija B, Marko O, Panić M, et al. How to prepare a pollen calendar for forecasting daily pollen concentrations of Ambrosia, Betula and Poaceae?[J]. Aerobiologia, 2018, 34(2):203-217.
[15] Gehrig R, Maurer F, Schwierz C. Designing new automatically generated pollen calendars for the public in Switzerland[J]. Aerobiologia, 2018, 34(3):349-362.
[16] Shin J Y, Han M J, Cho C, et al. Allergenic pollen calendar in Korea based on probability distribution models and Up-to-Date observations[J]. Allergy Asthma and Immunology Research, 2020, 12(2):259-273.
[17] Kim I, Kwak M J, Lee J K, et al. Flowering phenology and characteristics of pollen aeroparticles of Quercus species in Korea[J]. Forests, 2020, 11(2):232.
[18] Sofiev M, Bergmann K C. Allergenic pollen:A review of the production, release, distribution and health impacts[M]. Dordrecht:Springer, 2013:161-187.
[19] Pfaar O, Bastl K, Berger U, et al. Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen-induced rhinoconjunctivitis:An EAACI position paper[J]. Allergy, 2017, 72(5):713-722.
[20] Pfaar O, Karatzas K, Bastl K, et al. Pollen season is reflected on symptom load for grass and birch pollen-induced allergic rhinitis in different geographic areas:An EAACI task force report[J]. Allergy, 2020, 75(5):1099-1106.
[21] Cariñanos P, Casares-Porcel M, Quesada-Rubio J-M. Estimating the allergenic potential of urban green spaces:A case-study in Granada, Spain[J]. Landscape and Urban Planning. 2014, 123:134-144.
[22] Cariñanos P, Casares-Porcel M, Díaz de la G C, et al. Assessing allergenicity in urban parks:A nature-based solution to reduce the impact on public health[J]. Environmental Research, 2017, 155:219-227.
[23] Velasco-Jiménez M J, Alcázar P, Cariñanos P, et al. Allergenicity of the urban green areas in the city of Córdoba (Spain)[J]. Urban Forestry&Urban Greening, 2020, 49:126600.
[24] Li S S, Guo Y M, Williams G, et al. The association between ambient temperature and children's lung function in Baotou, China[J]. International Journal of Biometeorology, 2015, 59(7):791-798.
[25] He S, Mou Z, Peng L, et al. Impacts of meteorological and environmental factors on allergic rhinitis in children[J]. International Journal of Biometeorology, 2017, 61(5):797-806.
[26] Hu Y B, Xu Z W, Jiang F, et al. Relative impact of meteorological factors and air pollutants on childhood allergic diseases in Shanghai, China[J]. Science of the Total Environment, 2020, 706:135975.
[27] Ortega-Rosas C I, Meza-Figueroa D, Vidal-Solano J R, et al. Association of airborne particulate matter with pollen, fungal spores, and allergic symptoms in an arid urbanized area[J]. Environmental Geochemistry and Health, 2021, 43(5):1761-1782.
[28] Kilic M, Altunoglu M K, Akpınar S, et al. Relationship between airborne pollen and skin prick test results in Elazığ, Turkey[J]. Aerobiologia, 2019, 35(4):593-604.
[29] Guilbert A, Simons K, Hoebeke L, et al. Short-Term effect of pollen and spore exposure on allergy morbidity in the Brussels-Capital region[J]. EcoHealth, 2016, 13(2):303-315.
[30] Wang X Y, Ma T T, Wang X Y, et al. Prevalence of pol-len-induced allergic rhinitis with high pollen exposure in grasslands of northern China[J]. Allergy, 2018, 73(6):1232-1243.
[31] Guilbert A, Cox B, Bruffaerts N, et al. Relationships between aeroallergen levels and hospital admissions for asthma in the Brussels-Capital Region:A daily time series analysis[J]. Environmental Health, 2018, 17(1):35-47.
[32] Jones N R, Agnew M, Banic I, et al. Ragweed pollen and allergic symptoms in children:Results from a threeyear longitudinal study[J]. Science of the Total Environment, 2019, 683:240-248.
[33] Bédard A, Sofiev M, Arnavielhe S, et al. Interactions between air pollution and pollen season for rhinitis using mobile technology:A MASK-POLLAR study[J]. The Journal of Allergy and Clinical Immunology:In Practice, 2020, 8(3):1063-1073.e4.
[34] Silver J D, Spriggs K, Haberle S G, et al. Using crowdsourced allergic rhinitis symptom data to improve grass pollen forecasts and predict individual symptoms[J]. Science of the Total Environment, 2020, 720:137351.
[35] Navares R, Aznarte J L. Geographical imputation of missing poaceae pollen data via convolutional neural networks[J]. Atmosphere, 2019, 10(11):717-727.
[36] Damialis A, Häring F, Gökkaya M, et al. Human exposure to airborne pollen and relationships with symptoms and immune responses:Indoors versus outdoors, circadian patterns and meteorological effects in alpine and urban environments[J]. Science of the Total Environment, 2019, 653:190-199.
[37] Thien F, Beggs P J, Csutoros D, et al. The Melbourne epidemic thunderstorm asthma event 2016:An investigation of environmental triggers, effect on health services, and patient risk factors[J]. The Lancet Planetary Health, 2018, 2(6):e255-e263.
[38] Berger M, Bastl K, Bastl M, et al. Impact of air pollution on symptom severity during the birch, grass and ragweed pollen period in Vienna, Austria:Importance of O3 in 2010-2018[J]. Environmental Pollution, 2020, 263:114526.
[39] Ouyang Y, Xu Z, Fan E, et al. Effect of nitrogen dioxide and sulfur dioxide on viability and morphology of oak pollen[J]. International Forum of Allergy&Rhinology, 2016, 6(1):95-100.
[40] Celenk S. Detection of reactive allergens in long-distance transported pollen grains:Evidence from Ambrosia[J]. Atmospheric Environment, 2019, 209:212-219.
[41] Schinasi L H, Kenyon C C, Moore K, et al. Heavy precipitation and asthma exacerbation risk among children:A case-crossover study using electronic health records linked with geospatial data[J]. Environmental Research, 2020, 188:109714.
[42] Eguiluz-Gracia I, Mathioudakis A G, Bartel S, et al. The need for clean air:The way air pollution and climate change affect allergic rhinitis and asthma[J]. Allergy, 2020, 75(9):2170-2184.
[43] Berger U, Karatzas K, Jaeger S, et al. Personalized pollen-related symptom-forecast information services for allergic rhinitis patients in Europe[J]. Allergy, 2013, 68(8):963-965.
[44] Bousquet J, Schunemann H J, Fonseca J, et al. MACVIA-ARIA Sentinel NetworK for allergic rhinitis (MASK-rhinitis):The new generation guideline implementation[J]. Allergy, 2015, 70(11):1372-1392.
[45] Karatzas K, Voukantsis D, Jaeger S, et al. The patient's hay-fever diary:Three years of results from Germany[J]. Aerobiologia, 2014, 30(1):1-11.
[46] Silver J D, Spriggs K, Haberle S, et al. Crowd-sourced allergic rhinitis symptom data:The influence of environmental and demographic factors[J]. Science of the Total Environment, 2020, 705:135147.
[47] Setti L, Passarini F, De Gennaro G, et al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy:First evidence[J]. Environmental Research, 2020, 188:109754.
[48] Morawska L, Cao J. Airborne transmission of SARSCoV-2:The world should face the reality[J]. Environment International, 2020, 139:105730.
[49] Dunker S, Hornick T, Szczepankiewicz G, et al. No SARS-CoV-2 detected in air samples (pollen and particulate matter) in Leipzig during the first spread[J]. Science of the Total Environment, 2021, 755:142881.
[50] Patella V, Delfino G, Florio G, et al. Management of the patient with allergic and immunological disorders in the pandemic COVID-19 era[J]. Clinical and Molecular Allergy, 2020, 18(1):18.
[51] Zhang J J, Dong X, Cao Y Y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China[J]. Allergy, 2020, 75(7):1730-1741.
[52] Stjepanovic B, Svecnjak Z, Hrga I, et al. Seasonal variation of airborne ragweed (Ambrosia artemisiifolia L.) pollen in Zagreb, Croatia[J]. Aerobiologia, 2015, 31(4):525-535.
[53] Sabit M, Ramos J D, Alejandro G J, et al. Seasonal distribution of airborne pollen in Manila, Philippines, and the effect of meteorological factors to its daily concentrations[J]. Aerobiologia, 2016, 32(3):375-383.
[54] Toro A R, Córdova J A, Canales M, et al. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile[J]. PLoS ONE, 2015, 10(5):e0123077.
[55] Hadj Hamda S, Ben Dhiab A, Galán C, et al. Pollen spectrum in Northern Tunis, Tunisia[J]. Aerobiologia, 2017, 33(2):243-251.
[56] Adeniyi T A, Adeonipekun P A, Olowokudejo J D. Annual records of airborne pollen of Poaceae in five areas in Lagos, Nigeria[J]. Grana, 2018, 57(4):284-291.
[57] Tahir A, Jean J, Buttner M, et al. Annual comparison of grass, tree, and weed pollen in Las Vegas from 2015-2018[J]. Journal of Allergy and Clinical Immunology, 2020, 145(Suppl 2):AB35.
[58] Gowrie M. Airborne pollen sampling on the Caribbean Island of Trinidad and Tobago, WI[J]. Aerobiologia, 2016, 32(2):347-352.
[59] Calderón-Ezquerro M C, Guerrero-Guerra C, MartínezLópez B, et al. First airborne pollen calendar for Mexico City and its relationship with bioclimatic factors[J]. Aerobiologia, 2016, 32(2):225-244.
[60] 张军,徐新,张增信,等.南京市空气中花粉特征及其与气象条件关系[J].气象与环境学报, 2009, 25(5):67-71.
[61] Xu J X, Zhang D S. Daily variations of airborne pollen in Beijing Olympic Park during August of three consecutive years and their relationships with meteorological factors[J]. Forestry Studies in China, 2011, 13(2):154-162.
[62] 黄建花,王幼芳,沈春琳,等.上海地区气传花粉的监测[J].华东师范大学学报(自然科学版), 2013, 2(2):56-62.
[63] 李英,李月丛,吕素青,等.石家庄市空气花粉散布规律及与气候因子的关系[J].生态学报, 2014, 34(6):1575-1586.
[64] 李挚,何海娟,孙国强,等.北京市区与过敏相关的气传花粉[J].基础医学与临床, 2015, 35(6):734-738.
[65] Li J, Li Y C, Zhang Z, et al. The dispersion characteristics of airborne pollen in the Shijiazhuang (China) urban area and its relationship with meteorological factors[J]. Aerobiologia, 2018, 34(1):89-104.
[66] 吕素青,李月从,许清海,等.陕西中部黄土高原地区空气花粉组成及其与气候因子的关系——以洛川县下黑木沟村为例[J].生态学报, 2012, 32(24):7654-7666.
[67] 李媛媛,张芸,倪健,等.新疆天山大气桦木花粉与气象因子的相关分析[J].科学通报, 2019, 64(18):1909-1921.
[68] 张雨辰,马春梅,方伊曼.大气花粉监测与传播研究进展[J].微体古生物学报, 2018, 35(2):92-102.
[69] Rahman A, Luo C X, Chen B S, et al. Regional and seasonal variation of airborne pollen and spores among the cities of South China[J]. Acta Ecologica Sinica, 2020, 40(4):283-295.
[70] 徐景先,李耀宁,张德山.空气花粉变化规律和预测预报研究进展[J].生态学报, 2009, 29(7):3854-3863.
[71] Fuhrmann C M, Sugg M M, Konrad C E. Airborne pollen characteristics and the influence of temperature and precipitation in Raleigh, North Carolina, USA (1999-2012)[J]. Aerobiologia, 2016, 32(4):683-696.
[72] Galán C, Alcázar P, Oteros J, et al. Airborne pollen trends in the Iberian Peninsula[J]. Science of the Total Environment, 2016, 550:53-59.
[73] Oduber F, Calvo A I, Blanco-Alegre C, et al. Links between recent trends in airborne pollen concentration, meteorological parameters and air pollutants[J]. Agricultural and Forest Meteorology, 2019, 264:16-26.
[74] Kubik-Komar A, Piotrowska-Weryszko K, WeryszkoChmielewska E, et al. A study on the spatial and temporal variability in airborne Betula pollen concentration in five cities in Poland using multivariate analyses[J]. Science of the Total Environment, 2019, 660:1070-1078.
[75] ZiskA L H, Makra L, Harry S K, et al. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere:A retrospective data analysis[J]. The Lancet Planetary Health, 2019, 3(3):e124-e131.
[76] Galán C, Thibaudon M. Climate change, airborne pollen, and pollution[J]. Allergy, 2020, 75(9):2354-2356.
[77] Türkmen Y, Çeter T, Pinar N M. Analysis of airborne pollen of Gümüşhane Province in northeastern Turkey and its relationship with meteorological parameters[J]. Turkish Journal of Botany, 2018, 42(6):687-700.
[78] Ruiz-Valenzuela L, Aguilera F. Trends in airborne pollen and pollen-season-related features of anemophilous species in Jaen (south Spain):A 23-year perspective[J]. Atmospheric Environment, 2018, 180:234-243.
[79] Bruffaerts N, De Smedt T, Delcloo A, et al. Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium[J]. International Journal of Biometeorology, 2018, 62(3):483-491.
[80] Severova E, Volkova O. Variations and trends of Betula pollen seasons in Moscow (Russia) in relation to meteorological parameters[J]. Aerobiologia, 2017, 33(2):253-264.
[81] Velasco-JiméneZ M J, Alcázar P, Díaz de la Guardia C, et al. Pollen season trends in winter flowering trees in South Spain[J]. Aerobiologia, 2020, 36(2):213-224.
[82] Latorre F, Rotundo C, Abud Sierra M L, et al. Daily, seasonal, and interannual variability of airborne pollen of Araucaria angustifolia growing in the subtropical area of Argentina[J]. Aerobiologia, 2020, 36(2):277-290.
[83] Fang Y M, Ma C M, Bunting M J, et al. Airborne pollen concentration in Nanjing, Eastern China, and its relationship with meteorological factors[J]. Journal of Geophysical Research-Atmospheres, 2018, 123(19):10842-10856.
[84] Cristofolini F, Anelli P, Billi B M, et al. Temporal trends in airborne pollen seasonality:Evidence from the Italian POLLnet network data[J]. Aerobiologia, 2020, 36(1):63-70.
[85] Ojrzyńska H, Bilińska D, Werner M, et al. The influence of atmospheric circulation conditions on Betula and Alnus pollen concentrations in Wrocław, Poland[J]. Aerobiologia, 2020, 36(2):261-276.
[86] Paschalidou A K, Psistaki K, Charalampopoulos A, et al. Identifying patterns of airborne pollen distribution using a synoptic climatology approach[J]. Science of the Total Environment, 2020, 714:136625.
[87] Helfman-Hertzog I, Kutiel H, Levetin E, et al. The impact of Sharav weather conditions on airborne pollen in Jerusalem and Tel Aviv (Israel)[J]. Aerobiologia, 2018, 34(4):479-511.
[88] Ciani F, Marchi G, Dell'Olmo L, et al. Contribution of land cover and wind to the airborne pollen recorded in a South European urban area[J]. Aerobiologia, 2020, 36(3):325-340.
[89] Katz D S W, Batterman S A. Urban-scale variation in pollen concentrations:A single station is insufficient to characterize daily exposure[J]. Aerobiologia, 2020, 36(3):417-431.
[90] Monroy-Colín A, Silva-Palacios I, Tormo-Molina R, et al. Environmental analysis of airborne pollen occurrence, pollen source distribution and phenology of Fraxinus angustifolia[J]. Aerobiologia, 2018, 34(3):269-283.
[91] Fernández-Rodríguez S, Maya-Manzano J M, Colín A M, et al. Understanding hourly patterns of Olea pollen concentrations as tool for the environmental impact assessment[J]. Science of the Total Environment, 2020, 736:139363.
[92] Surek G, Mányoki G, Csonka B, et al. Studying correspondence of ragweed pollen's airborne concentration and the new greening measures under the common agriculture policy[J]. Mechanization in agriculture&Conserving of the resources, 2017, 63(3):115-118.
[93] Charalampopoulos A, Lazarina M, Tsiripidis I, et al. Quantifying the relationship between airborne pollen and vegetation in the urban environment[J]. Aerobiologia, 2018, 34(3):285-300.
[94] Rojo J, Oteros J, Pérez-Badia R, et al. Near-ground effect of height on pollen exposure[J]. Environmental Research, 2019, 174:160-169.
[95] Rojo J, Oteros J, Picornell A, et al. Land-Use and height of pollen sampling affect pollen exposure in Munich, Germany[J]. Atmosphere, 2020, 11(2):145.
[96] Šikoparija B, Mimić G, Panić M, et al. High temporal resolution of airborne Ambrosia pollen measurements above the source reveals emission characteristics[J]. Atmospheric Environment, 2018, 192:13-23.
[97] Fernández-Rodríguez S, Cortés-Pérez J P, Muriel P P, et al. Environmental impact assessment of Pinaceae airborne pollen and green infrastructure using BIM[J]. Automation in Construction, 2018, 96:494-507.
[98] Devadas R, Huete A R, Vicendese D, et al. Dynamic ecological observations from satellites inform aerobiology of allergenic grass pollen[J]. Science of the Total Environment, 2018, 633:441-451.
[99] Li X, Zhou Y, Meng L, et al. Characterizing the relationship between satellite phenology and pollen season:A case study of birch[J]. Remote Sensing of Environment, 2019, 222:267-274.
[100] Huete A, Tran N N, Nguyen H, et al. Forecasting pollen aerobiology with modis EVI, land cover, and phenology using machine learning tools[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan:IEEE, 2019:5429-5432.
[101] Weinberger K R, Kinney P L, Robinson G S, et al. Levels and determinants of tree pollen in New York City[J]. Journal of Exposure Science&Environmental Epi-demiology, 2018, 28(2):119-124.
[102] Kasprzyk I, Ćwik A, Kluska K, et al. Allergenic pollen concentrations in the air of urban parks in relation to their vegetation[J]. Urban Forestry&Urban Greening, 2019, 46:126486.
[103] Aaby B. NAP percentages as an expression of cleared areas[J]. Paläoklimaforschung, 1994, 12:13-27.
[104] Rojo J, Rapp A, Lara B, et al. Effect of land uses and wind direction on the contribution of local sources to airborne pollen[J]. Science of the Total Environment, 2015, 538:672-682.
[105] Maya-Manzano J M, Sadyś M, Tormo-Molina R, et al. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics[J]. Science of the Total Environment, 2017, 584-585:603-613.
[106] Kim K R, Han M J, Oh J-W. Forecast for pollen allergy:A review from field observation to modeling and services in Korea[J]. Immunology and Allergy Clinics of North America, 2021, 41(1):127-141.
[107] Kasprzyk I, Walanus A. Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in Rzeszów and Ostrowiec Sw.(SE Poland)[J]. Journal of Environmental Monitoring, 2010, 12(4):906-916.
[108] Silva-Palacios I, Fernández-Rodríguez S, Durán-Barroso P, et al. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula[J]. International Journal of Biometeorology, 2016, 60(2):297-306.
[109] Kubik-Komar A, Piotrowska-Weryszko K, WeryszkoChmielewska E, et al. Analysis of Fraxinus pollen seasons and forecast models based on meteorological factors[J]. Annals of Agricultural and Environmental Medicine, 2018, 25(2):285-291.
[110] Ascari L, Siniscalco C, Palestini G, et al. Relationships between yield and pollen concentrations in Chilean hazelnut orchards[J]. European Journal of Agronomy, 2020, 115:126036.
[111] Ritenberga O, Sofiev M, Siljamo P, et al. A statistical model for predicting the inter-annual variability of birch pollen abundance in Northern and North-Eastern Europe[J]. Science of the total Environment, 2018, 615:228-239.
[112] Picornell A, Oteros J, Trigo M M, et al. Increasing resolution of airborne pollen forecasting at a discrete sampled area in the southwest Mediterranean Basin[J]. Chemosphere, 2019, 234:668-681.
[113] Oteros J, Bergmann K C, Menzel A, et al. Spatial interpolation of current airborne pollen concentrations where no monitoring exists[J]. Atmospheric Environment, 2019, 199:435-442.
[114] García-Mozo H, Yaezel L, Oteros J, et al. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain[J]. Science of the Total Environment, 2014, 473/474:103-109.
[115] Galera M D, Elvira-Rendueles B, Moreno J M, et al. Analysis of airborne Olea pollen in Cartagena (Spain)[J]. Science of the Total Environment, 2018, 622/623:436-445.
[116] Jochner-Oette S, Menzel A, Gehrig R, et al. Decrease or increase?Temporal changes in pollen concentrations assessed by Bayesian statistics[J]. Aerobiologia, 2019, 35(1):153-163.
[117] García-Mozo H, Oteros J A, Galán C. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain[J]. Science of the Total Environment, 2016, 548/549:221-228.
[118] Rojo J, Rivero R, Romeromorte J, et al. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing[J]. International Journal of Biometeorology, 2017, 61(2):335-348.
[119] Fernández-Rodríguez S. Regional forecast model for the Olea pollen season in Extremadura (SW Spain)[J]. International Journal of Biometeorology, 2016, 60(10):1509-1517.
[120] Lara B, Rojo J, Fernández-González F, et al. Prediction of airborne pollen concentrations for the plane tree as a tool for evaluating allergy risk in urban green areas[J]. Landscape and Urban Planning, 2019, 189:285-295.
[121] Zhang Y, Bielory L, Cai T, et al. Predicting onset and duration of airborne allergenic pollen season in the United States[J]. Atmospheric Environment, 2015, 103:297-306.
[122] Recio M, Picornell A, Trigo M M, et al. Intensity and temporality of airborne Quercus pollen in the southwest Mediterranean area:Correlation with meteorological and phenoclimatic variables, trends and possible adaptation to climate change[J]. Agricultural and Forest Meteorology, 2018, 250-251:308-318.
[123] Tseng Y T, Kawashima S, Kobayashi S, et al. Algorithm for forecasting the total amount of airborne birch pollen from meteorological conditions of previous years[J]. Agricultural and Forest Meteorology, 2018, 249:35-43.
[124] Katz D S W, Morris J R, Batterman S A. Pollen production for 13 urban North American tree species:Allometric equations for tree trunk diameter and crown area[J]. Aerobiologia, 2020, 36(3):401-415.
[125] Tseng Y T, Kawashima S. Applying a pollen forecast algorithm to the Swiss Alps clarifies the influence of topography on spatial representativeness of airborne pollen data[J]. Atmospheric Environment, 2019, 212:153-162.
[126] Cordero J M, Rojo J, Gutiérrez-Bustillo A M, et al. Predicting the Olea pollen concentration with a machine learning algorithm ensemble[J]. International Journal of Biometeorology, 2021, 65(4):541-554.
[127] Maya-Manzano J M, Smith M, Markey E, et al. Recent developments in monitoring and modelling airborne pollen, a review[J]. Grana, 2020:1-19.
[128] Nowosad J, Stach A, Kasprzyk I, et al. Statistical techniques for modeling of Corylus, Alnus, and Betula pollen concentration in the air[J]. Aerobiologia, 2018, 34(3):301-313.
[129] Bogawski P, Grewling Ł, Jackowiak B. Predicting the onset of Betula pendula flowering in Poznań(Poland) using remote sensing thermal data[J]. Science of the Total Environment, 2019, 658:1485-1499.
[130] Nowosad J. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula[J]. International Journal of Biometeorology, 2016, 60(6):843-855.
[131] 赵文芳,王京丽,尚敏,等.基于粒子群优化和支持向量机的花粉浓度预测模型[J].计算机应用, 2019, 39:98-104.
[132] Lops Y, Choi Y, Eslami E, et al. Real-time 7-day forecast of pollen counts using a deep convolutional neural network[J]. Neural Computing&Applications, 2020, 32(15):11827-11836.
[133] Seo Y A, Kim K R, Cho C, et al. Deep neural networkbased concentration model for Oak pollen allergy warning in South Korea[J]. Allergy Asthma and Immunology Research, 2020, 12(1):149-163.
[134] Valencia J A, Astray G, Fernández-González M, et al. Assessment of neural networks and time series analysis to forecast airborne Parietaria pollen presence in the Atlantic coastal regions[J]. International Journal of Biometeorology, 2019, 63(6):735-745.
[135] Navares R, Aznarte J L. Forecasting Plantago pollen:Improving feature selection through random forests, clustering, and Friedman tests[J]. Theoretical and Applied Climatology, 2020, 139(1/2):163-174.
[136] Astray G, Fernández-González M, Rodríguez-Rajo F J, et al. Airborne castanea pollen forecasting model for ecological and allergological implementation[J]. Science of the Total Environment, 2016, 548/549:110-121.
[137] Zewdie G K, Lary D, Levetin E, et al. Applying deep neural networks and ensemble machine learning methods to forecast airborne Ambrosia pollen[J]. International Journal of Environmental Research and Public Health, 2019, 16(11):1-14.
[138] Zewdie G K, Lary D J, Liu X, et al. Estimating the daily pollen concentration in the atmosphere using machine learning and NEXRAD weather radar data[J]. Environmental Monitoring and Assessment, 2019, 191(7):418-427.
[139] Zewdie G K, Liu X, Wu D, et al. Applying machine learning to forecast daily Ambrosia pollen using environmental and NEXRAD parameters[J]. Environmental Monitoring and Assessment, 2019, 191(2):261-272.
[140] Tseng Y-T, Kawashima S, Kobayashi S, et al. Forecasting the seasonal pollen index by using a hidden Markov model combining meteorological and biological factors[J]. Science of the Total Environment, 2020, 698:134246.
[141] Navares R, Aznarte J L. Deep learning architecture to predict daily hospital admissions[J]. Neural Computing&Applications, 2020, 32:16235-16244.
[142] Csépe Z, Leelőssy Á, Mányoki G, et al. The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region[J]. Aerobiologia, 2020, 36(2):131-14.
文章导航

/