研究论文

中国钒资源全生命周期动态物质流分析

  • 简小枚 ,
  • 汪鹏 ,
  • 陈玮 ,
  • 段临林 ,
  • 王鹤鸣 ,
  • 陈伟强
展开
  • 1. 中国科学院城市环境研究所, 中国科学院城市环境与健康重点实验室, 厦门 361021;
    2. 中国科学院大学, 北京 100049;
    3. 厦门城市代谢重点实验室, 厦门 361021;
    4. 中国科学院赣江创新研究院, 赣州 341100;
    5. 东北大学国家环境保护生态工业重点实验室, 沈阳 110819
简小枚,博士研究生,研究方向为产业生态学,电子信箱:xmjian@iue.ac.cn

收稿日期: 2021-12-28

  修回日期: 2022-04-03

  网络出版日期: 2022-06-10

基金资助

国家自然科学基金项目(71904182);福建省对外合作项目(2020I0101);中国科学院江西稀土研究院自主部署项目(E055B004)

Material flow analysis of vanadium in China from 2000 to 2019

  • JIAN Xiaomei ,
  • WANG Peng ,
  • CHEN Wei ,
  • DUAN Linlin ,
  • WANG Heming ,
  • CHEN Weiqiang
Expand
  • 1. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Xiamen Key Lab of Urban Metabolism, Xiamen 361021, China;
    4. Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341100, China;
    5. State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China

Received date: 2021-12-28

  Revised date: 2022-04-03

  Online published: 2022-06-10

摘要

钒在钢铁、化工和航空航天等领域的广泛应用持续推动钒物质流动和供需格局的变化,特别是电池应用的商业化将影响未来能源转型及新能源存储领域的长期发展。为揭示中国钒物质流的变化和未来供需格局,构建了钒的全生命周期物质流分析框架,核算了2000—2019年中国钒的流量、存量和供需情况。研究显示:(1)中国是钒生产和消费大国,含钒钢铁、合金(钒铁合金)是金属钒的主要消费领域,消费占比稳定在85%以上,储能电池作为钒的前沿应用,占钒消费总量的比例也在不断增加;(2)2000—2019年中国是钒初级产品净进口国(5362 t),也是钒制品净出口国(8284 t),全钒液流电池处于出口状态,钒储能技术研究将迎来高峰;(3)2010—2019年钒在用存量增加了5倍,达到120万t,其中电池在用存量增加了24倍,钒开始向电池等新兴行业发展;(4)2000—2019年钒报废量为8.1万t,仅有1.8万t被回收(回收率为23%),提高钒的循环利用可以减少钒原矿资源的开采及其产生的环境影响。

本文引用格式

简小枚 , 汪鹏 , 陈玮 , 段临林 , 王鹤鸣 , 陈伟强 . 中国钒资源全生命周期动态物质流分析[J]. 科技导报, 2022 , 40(8) : 127 -136 . DOI: 10.3981/j.issn.1000-7857.2022.08.012

Abstract

The wide application of the vanadium resources in the fields of the steel, the chemicals, the aerospace and others promotes the vanadium flow and the change of the supply and demand pattern, especially, the commercialization of the battery applications will affect the energy transformation and the long-term development of the new energy storage field. To reveal the supply and demand pattern, this paper analyzes the dynamic material flow of vanadium during the whole life cycle of mining, smelting, refining, manufacturing, processing, use and waste management in China from 2000 to 2019. It is shown that:(1) the steel industry is the main consumption field of vanadium, with the consumption stable at more than 85%. The vanadium redox flow battery, as the frontier application of vanadium, accounts for an increasing proportion of the vanadium consumption; (2) from 2000 to 2019, China is a net importer of the primary vanadium products (5.4 kt) and a larger net exporter of the final vanadium products (8.3kt). The battery is in the export stage, and the research of the vanadium energy storage technology will help to push the export to the peak stage; (3) from 2010 to 2019, the vanadium in-use stock is increased 5 times, reaching 1.2 million tons, of which the in-use stock of the battery is increased 24 times, the production of vanadium begins to develop into emerging industries such as the batteries; (4) the scrap amount is 80.9 kt, of which 18.3 kt is recycled, with a recycling rate of 23%, and the improvement of the recycling can reduce the mining and environmental impact of the vanadium mines in the future.

参考文献

[1] National Research Council.Vanadium supply and demand outlook[M].Washington, D.C:The National Academies Press, 1978.
[2] 李鹏,向国洪,王勇军,等.钒的应用研究综述[J].化工管理, 2021(1):72-73.
[3] Mccullough E, Nassar N T.Assessment of critical minerals:Updated application of an early-warning screening methodology[J].Mineral Economics, 2017, 30(3):257-272.
[4] 高永璋.中国钒矿资源及供需形势分析[J].中国矿业, 2019, 28(增刊2):5-10.
[5] Petranikova M, Tkaczyk A H, Bartl A, et al.Vanadium sustainability in the context of innovative recycling and sourcing development[J].Waste Management, 2020, 113:521-544.
[6] 陈东辉.钒产业2019年年度评价[J].河北冶金, 2021(1):1-11.
[7] 崔文婧.我国钒矿资源开发利用现状及建议[J].合作经济与科技, 2019(11):54-56.
[8] 陈东辉.钒产业2015年年度评价[J].河北冶金, 2016(11):1-9.
[9] 陈东辉.钒产业2016年年度评价[J].河北冶金, 2017(10):8-17.
[10] 陈东辉.钒产业2017年年度评价[J].河北冶金, 2018(12):1-80.
[11] Tang L, Wang P, Graedel T E, et al.Refining the understanding of China's tungsten dominance with dynamic material cycle analysis[J].Resources, Conservation and Recycling, 2020, 158:104829.
[12] Chen W Q, Graedel T E.Dynamic analysis of aluminum stocks and flows in the United States:1900-2009[J].Ecological Economics, 2012, 81:92-102.
[13] Chen W Q.Dynamic product-level analysis of in-use aluminum stocks in the United States[J].Journal of Industrial Ecology, 2018, 22(6):1425-1435.
[14] 刘立涛,赵慧兰,刘晓洁,等.1995-2015年美国钴物质流演变[J].资源科学, 2021, 43(3):524-534.
[15] Hao M, Wang P, Song L L, et al.Spatial distribution of copper in-use stocks and flows in China:1978-2016[J].Journal of Cleaner Production, 2020, 261:121260.
[16] Hao H, Liu Z W, Zhao F Q, et al.Material flow analysis of lithium in China[J].Resources Policy, 2017, 51:100-106.
[17] Restrepo E, Lovik A N, Wager P, et al.Stocks, flows, and distribution of critical metals in embedded electronics in passenger vehicles[J].Environmental Science & Technology, 2017, 51(3):1129-1139.
[18] Song L L, Wang P, Hao M, et al.Mapping provincial steel stocks and flows in China:1978-2050[J].Journal of Cleaner Production, 2020, 262:121393.
[19] Goonan T G, Vanadium recycling in the United States in 2004[R].Reston:United States Geological Survey, 2011.
[20] Zhang F F, Li H Q, Chen B, et al.Vanadium metabolism investigation using substance flow and scenario analysis[J].Frontiers of Environmental Science & Engineering, 2014, 8(2):256-266.
[21] Hilliard H E.The materials flow of vanadium in the United States[R].Reston:United States Geological Survey, 1994.
[22] Moskalyk R R, Alfantazi A M.Processing of vanadium:A review[J].Minerals Engineering, 2003, 16(9):793-805.
[23] USGS.Mineral commodity summaries 2020:U.S.Geological Survey[R].Reston:United States Geological Survey, 2020.
[24] UN Comtrade.United Nations commodity trade statistics database[R/OL].[2022-03-30].https://comtrade.un.org.
[25] 丁瑞锋,张大伟."十三五"钒行业市场分析及发展趋势预测[J].冶金经济与管理, 2021, (2):11-15.
[26] 陈东辉.钒产业2018年年度评价[J].河北冶金, 2019(8):5-15.
[27] International Resources Panel.Recycling rates of metals a status report[R].New York:United Nations Environment Programme, 2011.
[28] 国家质量监督检验检疫总局,中国国家标准化管理委员会.钢筋混凝土用钢第2部分:热轧带肋钢筋:GB 1499.2-2007[S].北京:中国标准出版社, 2008.
[29] Watt J A J, Burke I T, Edwards R A, et al.Vanadium:A re-emerging environmental hazard[J].Environmental Science & Technology, 2018, 52(21):11973-11974.
[30] Ciotola A, Fuss M, Colombo S, et al.The potential supply risk of vanadium for the renewable energy transition in Germany[J].Journal of Energy Storage, 2021, 33:102094.
[31] European Commission.Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions on the 2017 list of critical raw materials for the EU[R].Brussels:European Commission, 2017.
[32] 胡佩伟,谢志诚,胡兵,等.含钒固废综合利用现状及发展[J].矿产保护与利用, 2020, 40(5):144-152.
[33] Wang Z H, Chen L, Qin Z F, et al.A green and efficient route for simultaneous recovery of low valence of vanadium and chromium, titanium and iron from vanadium slag[J].Resources, Conservation and Recycling, 2022, 178:106046.
[34] Gouveia J, Mendes A, Monteiro R, et al.Life cycle assessment of a vanadium flow battery[J].Energy Reports, 2020, 6:95-101.
文章导航

/