专题:2021年科技热点回眸

2021年无人机热点回眸

  • 段海滨 ,
  • 何杭轩 ,
  • 赵彦杰 ,
  • 王寅 ,
  • 牛轶峰 ,
  • 袁莞迈 ,
  • 邓亦敏 ,
  • 范彦铭 ,
  • 魏晨 ,
  • 罗德林
展开
  • 1. 北京航空航天大学自动化科学与电气工程学院仿生自主飞行系统研究组, 北京 100083;
    2. 中国电子科技集团公司信息科学研究院, 北京 100086;
    3. 南京航空航天大学航天学院, 南京 210016;
    4. 国防科技大学智能科学学院, 长沙 410073;
    5. 中国航空工业集团公司沈阳飞机设计研究所, 沈阳 110035;
    6. 厦门大学航空航天学院, 厦门 361102
段海滨,教授,研究方向为无人机仿生自主控制、计算机仿生视觉和仿生智能计算,电子信箱:hbduan@buaa.edu.cn

收稿日期: 2021-12-07

  修回日期: 2021-12-30

  网络出版日期: 2022-02-18

基金资助

科技部科技创新2030重大项目(2018AAA0102403);国家自然科学基金项目(T2121003,U20B2071,91948204,U19B2029,U1913602,61876187)

Review of technological hotspots of unmanned aerial vehicle in 2021

  • DUAN Haibin ,
  • HE Hangxuan ,
  • ZHAO Yanjie ,
  • WANG Yin ,
  • NIU Yifeng ,
  • YUAN Wanmai ,
  • DENG Yimin ,
  • FAN Yanming ,
  • WEI Chen ,
  • LUO Delin
Expand
  • 1. Bio-inspired Autonomous Flight System (BAFS) Research Group, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
    2. Information Science Academy of China Electronics Technology Group Corporation, Beijing 100086, China;
    3. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    4. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
    5. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110035, China;
    6. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China

Received date: 2021-12-07

  Revised date: 2021-12-30

  Online published: 2022-02-18

摘要

随着人工智能技术的发展以及机载任务平台性能的提升,2021年无人机技术与应用呈现新的发展态势。从无人机政策法规、自主控制、反无人机、应用领域等多方面回眸了2021年无人机的技术研究热点,分析了无人机技术领域未来的发展动向。人工智能、视觉导航等技术使无人机综合能力更加强大,也使其应用领域向更宽、更深、更综合方向拓展,尤其是人与机器人的共融联系随着人机交互技术的提升也更为紧密。综合而言,无人机向微型化、集群化、智能化、跨域化发展是必然趋势,无人机与人工智能的深度融合与跨平台实际应用仍然是当今和未来的研究热点。

本文引用格式

段海滨 , 何杭轩 , 赵彦杰 , 王寅 , 牛轶峰 , 袁莞迈 , 邓亦敏 , 范彦铭 , 魏晨 , 罗德林 . 2021年无人机热点回眸[J]. 科技导报, 2022 , 40(1) : 215 -227 . DOI: 10.3981/j.issn.1000-7857.2022.01.016

Abstract

With the development of artificial intelligence and enhancement of airborne task platform performance, the unmanned aerial vehicle (UAV) technology and its application have presented a new development situation. This paper summarizes and analyzes the technological hotspots of UAVs in 2021 with respect to UAV regulations, autonomous control technologies, antiUAV technologies and application fields for UAVs. Artificial intelligence and visual navigation technology not only enable UAVs to acquire more powerful functions but also largely extend and deepen the comprehensive application field. Especially, the human-robot will be getting closer and closer with the constant improvement of human-robot interaction technology. In summary, UAVs will be more miniaturized, clustered, intelligent and cross-domain. The deep integration with artificial intelligence and cross-platform practical applications of UAVs are still hotspots for the present and future.

参考文献

[1] AUVSC.洞见|全球民用无人机融入空域战略与我国对策[EB/OL].(2021-06-28)[2021-12-02].https://mp.weixin.qq.com/s/uDcw9s6l_Yr_VD_n_77yCQ.
[2] EASA.EASA and ENAV signed a memorandum of cooperation[EB/OL].(2021-10-26)[2021-11-29].https://www.easa.europa.eu/newsroom-and-events/news/easa-and-enav-signed-memorandum-cooperation.
[3] Drone Site Surveys.Drone laws UK 2021(Updated May 2021)[EB/OL].(2021-05-20)[2021-11-29].https://dronesitesurveys.co.uk/drone-laws-uk/.
[4] Alamouri A, Lampert A, Gerke M.An exploratory investigation of UAS regulations in Europe and the impact on effective use and economic potential[J].Drones, 2021, 5(3):63-79.
[5] Gov.UK.Regulatory horizons council:The regulation of drones[EB/OL].(2021-11-01)[2021-11-29].https://www.gov.uk/government/publications/regulatory-horizons-council-the-regulation-of-drones.
[6] New rules allowing small drones to fly over people in U.S.take effect[EB/OL].(2021-04-21)[2021-11-29].https://www.usnews.com/news/top-news/articles/2021-04-21/new-rules-allowing-small-drones-to-fly-over-people-in-ustake-effect.
[7] 中国民航局.关于《民用微轻小型无人驾驶航空器运行识别概念及要求(暂行)》公开征求意见的通知[EB/OL].(2021-03-10)[2021-11-29].http://www.caac.gov.cn/HDJL/YJZJ/202103/t20210310_206727.html.
[8] 中国民航局.民航局关于印发《民用无人驾驶航空试验基地(试验区)建设工作指引》的通知[EB/OL].(2021-05-21)[2021-11-29].http://www.caac.gov.cn/XXGK/XXGK/TZTG/202005/t20200522_202732.html.
[9] 中国民航局.中国民用航空局关于推进民航统计现代化改革的若干意见[EB/OL].(2021-08-13)[2021-11-29].http://www.caac.gov.cn/XXGK/XXGK/ZCFBJD/202108/t20210830_209048.html.
[10] 交通运输部办公厅关于印发《交通运输"十四五"立法规划》的通知[EB/OL].(2021-10-28)[2021-12-02].http://www.gov.cn/zhengce/zhengceku/2021-11/12/content_5650426.htm.
[11] 中国电子技术标准化研究院.智能无人集群系统发展白皮书[R].北京:中国电子技术标准化研究院, 2021.
[12] 杨先碧."机智号"要想在火星上飞起来,可比在地球上难多了[EB/OL].(2021-03-06)[2021-12-10].https://mp.weixin.qq.com/s/aUcCPs4zNiEx_zRI0eZpsA.
[13] New swarming capability planned for the V-Bat vertical takeoff and landing drone[EB/OL].(2021-07-29)[2021-12-10].https://www.thedrive.com/the-war-zone/41755/new-swarming-capability-planned-for-the-v-bat-verti cal-takeoff-and-landing-drone.
[14] Hensoldt simulates defence systems of the future[EB/OL].(2021-11-04)[2021-12-02].https://www.hensoldt.net/news/hensoldt-simulates-defence-systems-of-thefuture/.
[15] 航小萱.北航学子,再破世界纪录![EB/OL].(2021-10-03)[2021-12-10].https://mp.weixin.qq.com/s/360NGeHIXh_12qDyOCl6VQ.
[16] 常庆星."翼龙"-10无人机成功执行海洋气象观测科研试验任务[EB/OL].(2021-11-30)[2021-12-02].http://ep.cannews.com.cn/publish/zghkb7/html/4642//node_192682.html.
[17] 山东冠县"啄木鸟"聪明灵敏又可靠[EB/OL].(2021-12-01)[2021-12-06].http://49.5.6.212/html/2021-12/01/content_71810.htm.
[18] Su J, Yi D, Su B, et al.Aerial visual perception in smart farming:Field study of wheat yellow rust monitoring[J].IEEE Transactions on Industrial Informatics, 2021, 17(3):2242-2249.
[19] Pretto A, Aravecchia S, Burgard W, et al.Building an aerial-ground robotics system for precision farming:An adaptable solution[J].IEEE Robotics & Automation Magazine, 2021, 28(3):29-49.
[20] Pulone S.Voices of disruption[EB/OL].(2021-10-04)[2021-12-02].https://terpenesandtesting.com/pats-indoor-drone-solutions/.
[21] Kim B H, Li K, Kim J T.et al.Three-dimensional electronic microfliers inspired by wind-dispersed seeds[J].Nature, 2021, 597:503-510.
[22] Kim K, Spieler P, Lupu E S, et al.A bipedal walking robot that can fly, slackline, and skateboard[J].Science Robotics, 2021, 6:eabf8136.
[23] Roderick W R T, Cutkosky M R, Lentink D.Bird-inspired dynamic grasping and perching in arboreal environments[J].Science Robotics, 2021, 6(61):eabj7562.
[24] Stewart W, Guarino L, Piskarev Y, et al.Passive perching with energy storage for winged aerial robots[J/OL].Advanced Intelligent Systems.[2021-12-02].doi:10.10-02/aisy.202100150.
[25] Vourtsis C, Rochel V C, Serrano F R, et al.Insect inspired self-righting for fixed-wing drones[J].IEEE Robotics and Automation Letters, 2021, 6(4):6805-6812.
[26] Chen Y F, Xu S Y, Ren Z J, et al.Collision resilient insect-scale soft-actuated aerial robots with high agility[J].IEEE Transactions on Robotics, 2021, 37(5):1752-1764.
[27] Minoda K, Schilling F, Wüest V, et al.Viode:A simulated dataset to address the challenges of visual-inertial odometry in dynamic environments[J].IEEE Robotics and Automation Letters, 2021, 6(2):1343-1350.
[28] Liu X, Nardari G V, Ojeda F C, et al.Large-scale autonomous flight with real-time semantic SLAM under dense forest canopy[J].arXiv Preprint, 2021, arXiv:2109.06479v2.
[29] Qu C, Shivakumar S S, Liu W, et al.Llol:Low-latency odometry for spinning lidars[J].arXiv Preprint, 2021, arXiv:2110.01725v1.
[30] Loquercio A, Kaufmann E, Ranftl R, et al.Learning high-speed flight in the wild[J].Science Robotics, 2021, 6(59):eabg5810.
[31] Paris A, Tagliabue A, How J P.Autonomous MAV landing on a moving platform with estimation of unknown turbulent wind conditions[C]//AIAA Scitech 2021 Forum.Nashville:AIAA, 2021:0378.
[32] Tagliabue A, Kim D K, Everett M, et al.Demonstrationefficient guided policy search via imitation of robust tube MPC[J].arXiv Preprint, 2021, arXiv:2109.09910v2.
[33] Everett M, Habibi G, How J P.Efficient reachability analysis of closed-loop systems with neural network controllers[C]//2021 IEEE International Conference on Robotics and Automation (ICRA).Xi'an:IEEE, 2021:4384-4390.
[34] Raja G, Anbalagan S, Ganapathisubramaniyan A, et al.Efficient and secured swarm pattern multi-UAV communication[J].IEEE Transactions on Vehicular Technology, 2021, 70(7):7050-7058.
[35] Inala J P, Yang Y C, Paulos J, et al.Neurosymbolic transformers for multi-agent communication[J].arXiv Preprint, 2021, arXiv:2101.03238v1.
[36] Gao H H, Liu C, Li Y, et al.V2VR:Reliable hybrid-network-oriented V2V data transmission and routing considering RSUs and connectivity probability[J].IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6):3533-3546.
[37] Schilling F, Schiano F, Floreano D.Vision-based drone flocking in outdoor environments[J].IEEE Robotics and Automation Letters, 2021, 6(2):2954-2961.
[38] Kumar S A, Vanualailai J, Sharma B, et al.Velocity controllers for a swarm of unmanned aerial vehicles[J].Journal of Industrial Information Integration, 2021, 22:100198.
[39] Zhang Y, Wang X, Wang S, et al.Distributed bearingbased formation control of unmanned aerial vehicle swarm via global orientation estimation[J].Chinese Journal of Aeronautics, 2021, 35(1):44-58.
[40] Li X D, Wu L Z, Niu Y F, et al.Topological similarity based multi-target correlation localization for aerialground systems[J].Guidance, Navigation and Control, 2021, 1(3):2150016-1-25.
[41] Medeiros I, Boukerche A, Cerqueira E.Swarmbased and energy-aware unmanned aerial vehicle system for video delivery of mobile objects[J].IEEE Transactions on Vehicular Technology, 2022, 71(1):766-779.
[42] Tolstaya E, Paulos J, Kumar V, et al.Multi-robot coverage and exploration using spatial graph neural networks[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway, NJ:IEEE, 2021:8944-8950.
[43] Chen Y, Liao K, Ku M, et al.Multi-agent reinforcement learning based 3D trajectory design in aerial-terrestrial wireless caching networks[J].IEEE Transactions on Vehicular Technology, 2021, 70(8):8201-8215.
[44] Cai X, Schlotfeldt B, Khosoussi K, et al.Non-monotone energy-aware information gathering for heterogeneous robot teams[C]//2021 IEEE International Conference on Robotics and Automation (ICRA).Piscataway, NJ:IEEE, 2021:8859-8865.
[45] Huang H, Savkin A V,Huang C.Reliable path planning for drone delivery using a stochastic time-dependent public transportation network[J].IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8):4941-4950.
[46] Soria E, Schiano F, Floreano D.Predictive control of aerial swarms in cluttered environments[J].Nature Machine Intelligence, 2021, 3:545-554.
[47] Soria E, Schiano F, Floreano D.Distributed predictive drone swarms in cluttered environments[J].IEEE Robotics and Automation Letters, 2022, 7(1):73-80.
[48] Duisterhof B P, Li S, Burgués J, et al.Sniffy bug:A fully autonomous swarm of gas-seeking nano quadcopters in cluttered environments[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway, NJ:IEEE, 2021:9099-9106.
[49] Army Day 2021:Offensive swarm drone system demonstrates capabilities for the first time[EB/OL].(2021-01-15)[2021-12-07].https://www.msn.com/en-in/video/news/army-day-2021-offensive-swarm-drone-systemdemonstrates-capabilities-for-the-first-time/vi-BB1cLX4c.
[50] GROSS J A.In apparent world first, IDF deployed drone swarms in Gaza fighting[EB/OL].(2021-07-10)[2021-12-07].https://www.timesofisrael.com/in-apparentworld-first-idf-deployed-drone-swarms-in-gaza-fighting/.
[51] Losey S.DARPA nabs Gremlin drone in midair for first time[EB/OL].(2021-11-06)[2021-12-07].https://www.defensenews.com/unmanned/2021/11/05/darpa-nabs-gremlin-drone-in-midair-for-first-time/.
[52] James W.进攻性蜂群使能战术OFFSET完成最终场地测试[EB/OL].(2021-12-15)[2021-12-10].https://mp.weixin.qq.com/s/hNrbR3mC6yjkwYiZRqSRKA.
[53] Macchini M, Lortkipanidze M, Schiano F, et al.The impact of virtual reality and viewpoints in body motion based drone teleoperation[C]//2021 IEEE Virtual Reality and 3D User Interfaces (VR).Piscataway, NJ:IEEE, 2021:511-518.
[54] Ramachandran V, Macchini M, Floreano D.Arm-wrist haptic sleeve for drone teleoperation[J/OL].IEEE Robotics and Automation Letters.[2021-12-02].doi:10.1109/LRA.2021.3122107.
[55] Kolling A, Walker P, Chakraborty N, et al.Human interaction with robot swarms:A survey[J].IEEE Transactions on human-machine systems, 2015, 46(1):9-26.
[56] Macchini M, Matteïs L D, Schiano F, et al.Personalized human-swarm interaction through hand motion[J].IEEE Robotics and Automation Letters, 2021, 6(4):8341-8348.
[57] Zheng Y, Du Y, Su Z, et al.Evolutionary human-UAV cooperation for transmission network restoration[J].IEEE Transactions on Industrial Informatics, 2021, 17(3):1648-1657.
[58] Palossi D, Zimmerman N, Burrello A, et al.Fully onboard AI-powered human-drone pose estimation on ultra-low power autonomous flying nano-UAVs[J/OL].IEEE Internet of Things Journal.[2021-12-02].doi:10.1109/JIOT.2021.3091643.
[59] Tognon M, Alami R, Siciliano B.Physical human-robot interaction with a tethered aerial vehicle:Application to a force-based human guiding problem[J].IEEE Transactions on Robotics, 2021, 37(3):723-734.
[60] Johns Hopkins APL bridges the gap with next phase of DARPA's ACE program[EB/OL].(2021-04-08)[2021-12-14].https://www.jhuapl.edu/PressRelease/210408bAPL-bridges-gap-next-phase-DARPA-ACE.
[61] 王彤.美国兰德公司发布"马赛克战"新报告,加速推动概念发展[EB/OL].(2021-12-14)[2021-12-14].https://mp.weixin.qq.com/s/NAgPXKcaqMI5gPP7UXPacg.
[62] D'Urso S.Let's talk about Boeing Loyal Wingman unmanned aerial vehicle's first flight[EB/OL].(2021-03-03)[2021-12-08].https://theaviationist.com/2021/03/03/lets-talk-about-boeing-loyal-wingman-unmanned-aeri al-vehicles-first-flight/.
[63] U.S.Navy begins first manned-unmanned naval capabilities exercise in the Pacific[EB/OL].(2021-04-22)[2021-12-15].https://www.armadainternational.com/2021/04/us-navy-begins-first-manned-unmanned-naval-capabili ties-exercise-in-the-pacific/.
[64] Singh G, Chanel C P C, Roy R N.Mental workload estimation based on physiological features for pilot-UAV teaming applications[J].Frontiers in Human Neuroscience, 2021, 15:692878.
[65] Schwerd S, Schulte A.Operator state estimation to enable adaptive assistance in manned-unmanned-teaming[J].Cognitive Systems Research, 2021, 67:73-83.
[66] Wojtyra D, Waclawik K, Krenc K, et al.Concept for the construction and application of a counter-UAV defence system[J].Problemy Mechatroniki:Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa, 2021, 12(1):87-100.
[67] 杨王诗剑.无人装备占据展台"C位"——透视第15届阿布扎比国际防务展[EB/OL].(2021-03-18)[2021-11-29].https://m.gmw.cn/baijia/2021-03/18/34695765.html.
[68] Radford M.Multi-mode radar white paper[R/OL].(2021-02-26)[2021-12-09].https://www.blighter.com/wp-content/uploads/multi-mode-radar-white-paper.pdf.
[69] Strout N.DARPA's newest system kills drones with stringy streamers[EB/OL].(2021-06-09)[2021-12-10].https://www.c4isrnet.com/unmanned/2021/06/08/darpasnewest-system-kills-drones-with-stringy-streamers/.
[70] Brust M, Danoy G, Stolfi D H, et al.Swarm-based counter UAV defense system[J].Discover Internet Things, 2021, 1:2.
[71] 谢海斌,闫家鼎,庄东晔,等.无人机集群反制技术剖析[J].国防科技, 2021, 42(4):10-16.
[72] 王凯.最快1秒内实施控制!新无人机反制系统在青岛成功进行设备测试[EB/OL].(2021-03-12)[2021-12-02].https://news.qingdaonews.com/qingdao/2021-03/12/content_22616770.htm.
[73] Cai Z, Liu Z, Kou L.Reliable UAV monitoring system using deep learning approaches[J/OL].IEEE Transactions on Reliability.[2021-12-02].doi:10.1109/TR.2021.3119068.
[74] Jiang N, Wang K, Peng X, et al.Anti-UAV:A large multi-modal benchmark for UAV tracking[J].arXiv preprint, 2021, arXiv:2101.08466v3.
文章导航

/