专题:2021年科技热点回眸

2021年可重构智能超表面技术热点回眸

  • 司黎明 ,
  • 汤鹏程 ,
  • 董琳 ,
  • 徐浩阳 ,
  • 吕昕
展开
  • 1. 北京理工大学集成电路与电子学院, 北京 100081;
    2. 毫米波与太赫兹技术北京市重点实验室, 北京 100081
司黎明,副教授,研究方向为电磁场与微波技术,电子信箱:lms@bit.edu.cn

收稿日期: 2021-12-29

  修回日期: 2022-01-05

  网络出版日期: 2022-02-18

基金资助

国家重点基础研究项目(2019-JCJQ-349);国家重点研发计划项目(2018YFF0212103);国家自然科学基金项目(61527805);高等学校学科科研创新引智计划项目(B14010);北京理工大学国际合作项目(BITBLR2020014)

Hot spots of reconfigurable intelligent surface technology in 2021: A review

  • SI Liming ,
  • TANG Pengcheng ,
  • DONG Lin ,
  • XU Haoyang ,
  • Lü Xin
Expand
  • 1. Beijing Key Laboratory of Millimeter Wave and Terahertz Technology, Beijing 100081, China;
    2. School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China

Received date: 2021-12-29

  Revised date: 2022-01-05

  Online published: 2022-02-18

摘要

2021年是可重构智能超表面技术井喷的一年。作为未来无线网络研究中可能出现的新兴范式,可重构智能超表面有望通过软件编程的方式实现对电磁波的灵活操控,从而构建智能无线环境。盘点了2021年可重构智能超表面技术研究的关键热点,围绕其与通信前沿技术的融合,简述了其多输入多输出技术、非正交多址技术、移动边缘计算技术和无人机技术的融合方面的进展。

本文引用格式

司黎明 , 汤鹏程 , 董琳 , 徐浩阳 , 吕昕 . 2021年可重构智能超表面技术热点回眸[J]. 科技导报, 2022 , 40(1) : 175 -183 . DOI: 10.3981/j.issn.1000-7857.2022.01.012

Abstract

In 2021, reconfigurable intelligent surface technology made a series of breakthroughs. As a possible emerging paradigm in future wireless network research, reconfigurable intelligent surface is expected to be a way to flexibly control electromagnetic waves through programming so as to build an intelligent wireless environment. In this paper, key hotspots of reconfigurable intelligent surface technology in 2021 are summarized. By reviewing the integration of intelligent reconfigurable surface and advanced communication technologies, including multiple input multiple output technology, non-orthogonal multiple access technology, mobile edge computing technology and UAV communication technology, the future development of reconfigurable intelligent surface technology is discusssed.

参考文献

[1] Yu N F, Genevet P, Kats M A, et al.Light propagation with phase discontinuities:generalized laws of reflection and refraction[J].Science, 2011, 334(6054):333-337.
[2] Cui T J, Qi M Q, Wan X, et al.Coding metamaterials, digital metamaterials and programmable metamaterials[J].Light:Science & Applications, 2014, 3(10):218.
[3] Li L L, Cui T J, Ji W, et al.Electromagnetic reprogrammable coding-metasurface holograms[J].Nature Communications, 2017, 8(1):197.
[4] Wang J H, Tang W K, Han Y, et al.Interplay between RIS and AI in wireless communications:Fundamentals, architectures, applications, and open research problems[J].IEEE Journal on Selected Areas in Communications, 2021, 39(8):2271-2288.
[5] Alsabah M, Naser M A, Mahmmod B M, et al.6G Wireless Communications Networks:A Comprehensive Survey[J].IEEE Access, 2021, 9:148191-148243.
[6] Yildirim I, Uyrus A, Basar E.Modeling and analysis of reconfigurable intelligent surfaces for indoor and outdoor applications in future wireless networks[J].IEEE Transactions on Communications, 2021, 69(2):1290-1301.
[7] Khaleel A, Basar E.Reconfigurable intelligent surfaceempowered MIMO systems[J].IEEE Systems Journal, 2021, 15(3):4358-4366.
[8] You L Xiong J Y, Ng D W K, et al.Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission[J].IEEE Transactions on Signal Processing, 2021, 69:1407-1421.
[9] Qian X W, Di Renzo M, Liu J, et al.Beamforming through reconfigurable intelligent surfaces in single-user mimo systems:SNR distribution and scaling laws in the presence of channel fading and phase noise[J].IEEE Wireless Communications Letters, 2021, 10(1):77-81.
[10] Perovic N S, Tran L N, Di Renzo M, et al.Achievable rate optimization for MIMO systems with reconfigurable intelligent surfaces[J].IEEE Transactions on Wireless Communications, 2021, 20(6):3865-3882.
[11] Wild T, Braun V, Viswanathan H.Joint design of communication and sensing for beyond 5G and 6G systems[J].IEEE Access, 2021, 9:30845-30857.
[12] Ardah K, Gherekhloo S, de Almeida A L F, et al.TRICE:A channel estimation framework for RIS-aided Millimeter-wave MIMO systems[J].IEEE Signal Processing Letters, 2021, 28:513-517.
[13] Wan Z W, Gao Z, Gao F F, et al.Terahertz massive MIMO with holographic reconfigurable intelligent surfaces[J].IEEE Transactions on Communications, 2021, 69(7):4732-4750.
[14] Mursia P, Sciancalepore V, Garcia-Saavedra A, et al.RISMA:Reconfigurable intelligent surfaces enabling beamforming for IoT massive access[J].IEEE Journal on Selected Areas in Communications, 2021, 39(4):1072-1085.
[15] Ahmed A, Elsaraf Z, Khan F A, et al.Cooperative nonorthogonal multiple access for beyond 5G networks[J].IEEE Open Journal of the Communications Society, 2021, 2:990-999.
[16] Fu M, Zhou Y, Shi Y M, et al.Reconfigurable intelligent surface empowered downlink non-orthogonal multiple access[J].IEEE Transactions on Communications, 2021, 69(6):3802-3817.
[17] Liu X, Liu Y W, Chen Y, et al.RIS enhanced massive non-orthogonal multiple access networks:Deployment and passive beamforming design[J].IEEE Journal on Selected Areas in Communications, 2021, 39(4):1057-1071.
[18] Ding Z G, Schober R, Poor H V.Unveiling the importance of SIC in NOMA systems-Part II:New results and future directions[J].IEEE Communications Letters, 2020, 24(11):2378-2382.
[19] de Sena A S, Nardelli P H J, da Costa D B, et al.IRsassisted massive MIMO-NOMA networks:Exploiting wave polarization[J].IEEE Transactions on Wireless Communications, 2021, 20(11):7166-7183.
[20] Cheng Y Y, Li K H, Liu Y W, et al.Downlink and uplink intelligent reflecting surface aided networks:NOMA and OMA[J].IEEE Transactions on Wireless Communications, 2021, 20(6):3988-4000.
[21] Elhattab M, Arfaoui M A, Assi C, et al.Reconfigurable intelligent surface assisted coordinated multipoint in downlink NOMA networks[J].IEEE Communications Letters, 2021, 25(2):632-636.
[22] Yang G, Xu X Y, Liang Y C, et al.Reconfigurable intelligent surface-assisted non-orthogonal multiple access[J].IEEE Transactions on Wireless Communications, 2021, 20(5):3137-3151.
[23] Le C B, Do D T, Li X W, et al.Enabling NOMA in backscatter reconfigurable intelligent surfaces-aided systems[J].IEEE Access, 2021, 9:33782-33795.
[24] Ning Z L, Dong P R, Wang X J, et al.Mobile edge computing enabled 5G health monitoring for internet of medical things:A decentralized game theoretic approach[J].IEEE Journal on Selected Areas in Communications, 2021, 39(2):463-478.
[25] Al-Hraishawi H, Minardi M, Chougrani H, et al.Multilayer space information networks:Access design and softwarization[J].IEEE Access, 2021, 9:158587-158598.
[26] Cao X L, Yang B, Huang C W, et al.Converged reconfigurable intelligent surface and mobile edge computing for space information networks[J].IEEE Network, 2021, 35(4):42-48.
[27] Li Z Y, Chen M, Yang Z H, et al.Energy efficient reconfigurable intelligent surface enabled mobile edge computing networks with NOMA[J].IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2):427-440.
[28] Huang S F, Wang S, Wang R, et al.Reconfigurable intelligent surface assisted mobile edge computing with heterogeneous learning tasks[J].IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2):369-382.
[29] Hu X Y, Masouros C, Wong K K.Reconfigurable intelligent surface aided mobile edge computing:From optimization-based to location-only learning-based solutions[J].IEEE Transactions on Communications, 2021, 69(6):3709-3725.
[30] Hu X, Masouros C, Wong K K.Removing channel estimation by location-only based deep learning for RIS aided mobile edge computing[C]//ICC 2021-IEEE International Conference on Communications.Montreal:IEEE, 2021:1-6.
[31] Liu C X, Feng W, Chen Y F, et al.Cell-free satelliteUAV networks for 6G wide-area internet of things[J].IEEE Journal on Selected Areas in Communications, 2021, 39(4):1116-1131.
[32] Ranjha A, Kaddoum G.URLLC facilitated by mobile UAV relay and RIS:A joint design of passive beamforming, blocklength, and UAV positioning[J].IEEE Internet of Things Journal, 2021, 8(6):4618-4627.
[33] Pan Y J, Wang K Z, Pan C H, et al.UAV-assisted and intelligent reflecting surfaces-supported terahertz communications[J].IEEE Wireless Communications Letters, 2021, 10(6):1256-1260.
[34] Liu X, Liu Y W, Chen Y.Machine learning empowered trajectory and passive beamforming design in UAV-RIS wireless networks[J].IEEE Journal on Selected Areas in Communications, 2021, 39(7):2042-2055.
[35] Li Y J, Yin C, Do-Duy T, et al.Aerial reconfigurable intelligent surface-enabled URLLC UAV systems[J].IEEE Access, 2021, 9:140248-140257.
[36] Shang B D, Shafin R, Liu L J.UAV swarm-enabled aerial reconfigurable intelligent surface (SARIS)[J].IEEE Wireless Communications, 2021, 28(5):156-163.
[37] Li S X, Duo B, Di Renzo M, et al.Robust secure UAV communications with the aid of reconfigurable intelligent surfaces[J].IEEE Transactions on Wireless Communications, 2021, 20(10):6402-6417.
[38] Guo X F, Chen Y B, Wang Y.Learning-based robust and secure transmission for reconfigurable intelligent surface aided millimeter wave UAV communications[J].IEEE Wireless Communications Letters, 2021, 10(8):1795-1799.
[39] Samir M, Elhattab M, Assi C, et al.Optimizing age of information through aerial reconfigurable intelligent surfaces:A deep reinforcement learning approach[J].IEEE Transactions on Vehicular Technology, 2021, 70(4):3978-3983.
[40] Michailidis E T, Miridakis N I, Michalas A, et al.Energy optimization in Dual-RIS UAV-Aided MEC-enabled internet of vehicles[J].Sensors, 2021, 21(13):4392.
文章导航

/