专题:2021年科技热点回眸

2021年污水流行病学热点回眸

  • 程荣 ,
  • 石磊 ,
  • 郑祥
展开
  • 中国人民大学环境学院, 北京 100872
程荣,副教授,研究方向为环境公共卫生、环境功能材料,电子信箱:chengrong@ruc.edu.cn

收稿日期: 2021-12-13

  修回日期: 2022-01-02

  网络出版日期: 2022-02-18

基金资助

国家自然科学基金项目(51778618,52070192)

Advances in wastewater-based epidemiology in 2021

  • CHENG Rong ,
  • SHI Lei ,
  • ZHENG Xiang
Expand
  • School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China

Received date: 2021-12-13

  Revised date: 2022-01-02

  Online published: 2022-02-18

摘要

污水流行病学是调查人群消费化学物质/感染病原体和健康状况的一种有力和具有成本效益的工具,当前肆虐全球的新冠疫情推动了污水流行病学的迅速发展。从污水样品的采集、前处理及分析,物质的稳定性,校正因子的计算与不确定性分析,实施案例等方面盘点了2021年污水流行病学的重要研究及应用。

本文引用格式

程荣 , 石磊 , 郑祥 . 2021年污水流行病学热点回眸[J]. 科技导报, 2022 , 40(1) : 150 -160 . DOI: 10.3981/j.issn.1000-7857.2022.01.009

Abstract

Wastewater-based epidemiology (WBE) is a powerful and cost-effective tool for investigating chemicals consumption/pathogens infection and health status of populations, and is rapidly evolving as COVID-19 continues to ravage the world. This paper reviews the significant developments and breakthroughs of WBE in 2021 including collection, pretreatment and analysis of sewage samples, materials stability, correction factors calculation and uncertainty analysis, implementation cases and so on, based on the research findings published in international top academic journals or the most influential achievements. It provides reference for clarifying the development of WBE and promoting the research and application of WBE.

参考文献

[1] 王德高.污水流行病学[M].北京:科学出版社, 2018.
[2] Alygizakis N, Alygizakis A N, Rousis N I, et al.Analytical methodologies for the detection of SARS-CoV-2 in wastewater:Protocols and future perspectives[J].Trends in Analytical Chemistry, 2021, 134:116125.
[3] Schang C, Crosbie N D, Nolan M, et al.Passive sampling of SARS-CoV-2 for wastewater surveillance[J].Environmental Science & Technology, 2021, 55(15):10432-10441.
[4] Verhagen R, Kaserzon S L, Tscharke B J, et al.Time-integrative passive sampling of very hydrophilic chemicals in wastewater influent[J].Environmental Science & Technology Letters, 2020, 7(11):848-853.
[5] Verhagen R, Tscharke B J, Clokey J, et al.Multisite calibration of a microporous polyethylene tube passive sampler for quantifying drugs in wastewater[J].Environmental Science & Technology, 2021, 55(19):12922-12929.
[6] Whitney O N, Kennedy L C, Fan V B, et al.Sewage, salt, silica, and SARS-CoV-2(4S):An economical kit-free method for direct capture of SARS-CoV-2 RNA from wastewater[J].Environmental Science & Technology, 2021, 55(8):4880-4888.
[7] LaTurner Z W, Zong D M, Kalvapalle P, et al.Evaluating recovery, cost, and throughput of different concentration methods for SARS-CoV-2 wastewater-based epidemiology[J].Water Research, 2021, 197:117043.
[8] Zhang D Y, Zhang X L, Ma R, et al.Ultra-fast and onsite interrogation of Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2) in waters via surface enhanced Raman scattering (SERS)[J].Water Research, 2021, 200:117243.
[9] Mao K, Zhang H, Yang Z G.Can a paper-based device trace COVID-19 sources with wastewater-based epidemiology?[J].Environmental Science & Technology, 2020, 54(7):3733-3735.
[10] Mao K, Zhang H, Yang Z G.An integrated biosensor system with mobile health and wastewater-based epidemiology (iBMW) for COVID-19 pandemic[J].Biosensors and Bioelectronics, 2020, 169:112617.
[11] Mao K, Yang Z G, Zhang H, et al.Paper-based nanosensors to evaluate community-wide illicit drug use for wastewater-based epidemiology[J].Water Research, 2021, 189:116559.
[12] Daughton C G.Using biomarkers in sewage to monitor community-wide human health:Isoprostanes as conceptual prototype[J].Science of the Total Environment, 2012, 424:16-38.
[13] Polo D, Quintela-Baluja M, Corbishley A, et al.Making waves:Wastewater-based epidemiology for COVID-19-approaches and challenges for surveillance and prediction[J].Water Research, 2020, 186:116404.
[14] Hart O E, Halden R U.Modeling wastewater temperature and attenuation of sewage-borne biomarkers globally[J].Water Research, 2020, 172:115473.
[15] Oliveira L C, Torres-Franco A F, Lopes B C, et al.Viability of SARS-CoV-2 in river water and wastewater at different temperatures and solids content[J].Water Research, 2021, 195:117002.
[16] Sala-Comorera L, Reynolds L J, Martin N A, et al.Decay of infectious SARS-CoV-2 and surrogates in aquatic environments[J].Water Research, 2021, 201:117090.
[17] Ahmed W, Bertsch P M, Bibby K, et al.Decay of SARSCoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewaterbased epidemiology[J].Environmental Research, 2020, 191:110092.
[18] Graham K E, Loeb S K, Wolfe M K, et al.SARS-CoV-2 RNA in wastewater settled solids is associated with COVID-19 cases in a large urban sewershed[J].Environmental Science & Technology, 2021, 55:488-498.
[19] Li J Y, Gao J F, Zheng Q D, et al.Effects of pH, temperature, suspended solids, and biological activity on transformation of illicit drug and pharmaceutical biomarkers in sewers[J].Environmental Science & Technology, 2021, 55:8771-8782.
[20] Huizer M, Laak T L, Voogt P, et al.Wastewater-based epidemiology for illicit drugs:A critical review on global data[J].Water Research, 2021, 207:117789.
[21] Gao J F, Tscharke B J, Choi P M, et al.Using prescription and wastewater data to estimate the correction factors of atenolol, carbamazepine, and naproxen for wastewater-based epidemiology applications[J].Environmental Science & Technology, 2021, 55(11):7551-7560.
[22] Kantor R S, Nelson K L, Greenwald H D, et al.Challenges in measuring the recovery of SARS-CoV-2 from wastewater[J].Environmental Science & Technology, 2021, 55(6):3514-3519.
[23] Kasprzyk-Hordern B, Proctor K, Jagadeesan K, et al.Diagnosing down-the-drain disposal of unused pharmaceuticals at a river catchment level:Unrecognized sources of environmental contamination that require nontechnological solutions[J].Environmental Science & Technology, 2021, 55(17):11657-11666.
[24] Bradley V C, Kuriwaki S, Isakov M, et al.Unrepresentative big surveys significantly overestimated US vaccine uptake[J].Nature, 2021, 600:695-700.
[25] 刘然彬,郝晓地, van Loosdrecht M,等.污水流行病学用于新冠肺炎预警研究进展[J].中国给水排水, 2021, 37(14):37-45.
[26] Langone M, Petta L, Cellamare C M, et al.SARS-CoV-2 in water services:Presence and impacts[J].Environmental Pollution, 2021, 268:115806.
[27] Gonçalves J, Koritnik T, Mioč V, et al.Detection of SARS-CoV-2 RNA in hospital wastewater from a low COVID-19 disease prevalence area[J].Science of the Total Environment,2021, 755:143226.
[28] Albastaki A, Naji M, Lootah R, et al.First confirmed detection of SARS-COV-2 in untreated municipal and aircraft wastewater in Dubai, UAE:The use of wastewater based epidemiology as an early warning tool to monitor the prevalence of COVID-19[J].Science of the Total Environment, 2021, 760:143350.
[29] Baldovin T, Amoruso I, Fonzo M, et al.SARS-CoV-2 RNA detection and persistence in wastewater samples:An experimental network for COVID-19 environmental surveillance in Padua, Veneto Region (NE Italy)[J].Science of the Total Environment, 2021, 760:143329.
[30] Fitzgerald S F, Rossi G, Low A S, et al.Site specific relationships between COVID-19 cases and SARS-CoV-2 viral load in wastewater treatment plant influent[J].Environmental Science & Technology, 2021, 55(22):15276-15286.
[31] Ahmed W, Tscharke B, Bertsch P M, et al.SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community:A temporal case study[J].Science of the Total Environment, 2021, 761:144216.
[32] Lundy L, Fatta-Kassinos D, Slobodnik J, et al.Making waves:Collaboration in the time of SARS-CoV-2-rapid development of an international co-operation and wastewater surveillance database to support public health decision-making[J].Water Research, 2021, 199:117167.
[33] Hata A, Hara-Yamamura H, Meuchi Y, et al.Detection of SARS-CoV-2 in wastewater in Japan during a COVID-19 outbreak[J].Science of the Total Environ ment, 2021, 758:143578.
[34] Bibby K, Bivins A, Wu Z Y, et al.Making waves:Plausible lead time for wastewater based epidemiology as an early warning system for COVID-19[J].Water Research, 2021, 202:117438.
[35] Olesen S W, Imakaev M, Duvallet C.Making waves:Defining the lead time of wastewater-based epidemiology for COVID-19[J].Water Research, 2021, 202:117433.
[36] Hemalatha M, Kiran U, Kuncha S K, et al.Surveillance of SARS-CoV-2 spread using wastewater-based epidemiology:Comprehensive study[J].The Science of the Total Environment, 2021, 768:144704.
[37] Prado T, Fumian T M, Mannarino C F, et al.Wastewater-based epidemiology as a useful tool to track SARSCoV-2 and support public health policies at municipal level in Brazil[J].Water Research, 2021, 191:116810.
[38] Mota C R, Bressani-Ribeiro T, Araújo J C, et al.Assessing spatial distribution of COVID-19 prevalence in Brazil using decentralised sewage monitoring[J].Water Research, 2021, 202:117388.
[39] Hillary L S, Farkas K, Maher K H, et al.Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK[J].Water Research, 2021, 200:117214.
[40] Reeves K, Liebig J, Feula A, et al.High-resolution within-sewer SARS-CoV-2 surveillance facilitates informed intervention[J].Water Research, 2021, 204:117613.
[41] 张彤,徐浩光.污水监测新型冠状病毒辅助抗疫[J].科学通报, 2021, 66(34):4354-4357.
文章导航

/