专题:2021年科技热点回眸

2021年新冠病毒变异、跨种传播及疫苗和药物研究热点回眸

  • 杨婧 ,
  • 荣文婉 ,
  • 桓瑜 ,
  • 龚玉环 ,
  • 毕玉海
展开
  • 1. 中国科学院流感研究与预警中心, 中国科学院微生物研究所, 病原微生物与免疫学重点实验室, 北京 100101;
    2. 中国科学院大学, 北京 100049
杨婧,博士,研究方向为病毒遗传演变与传播机制,电子信箱:yangj@im.ac.cn

收稿日期: 2021-12-25

  修回日期: 2022-01-02

  网络出版日期: 2022-02-18

基金资助

国家重点研发计划项目(2021YFC2301300);国家自然科学基金专项(32041010,82161148010);国家自然科学基金优秀青年科学基金项目(31822055);中国博士后科学基金项目(2020T130123ZX);中国科学院青年创新促进会项目(2017122);国家病原微生物资源库项目

Retrospect and prospect of SARS-CoV-2 in 2021: Genetic mutation, cross-species transmission, and vaccine and drug in the COVID-19 pandemic

  • YANG Jing ,
  • RONG Wenwan ,
  • HUAN Yu ,
  • GONG Yuhuan ,
  • BI Yuhai
Expand
  • 1. Center for Influenza Research and Early-warning (CASCIRE), CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-12-25

  Revised date: 2022-01-02

  Online published: 2022-02-18

摘要

概括了新冠病毒主要变异毒株的分类、时空分布和流行动态,以及关键变异位点和其对病毒生物学特性的影响;阐述了2021年新冠病毒基因进化起源研究进展和新冠病毒在人和动物间跨种传播的风险;论述了2021年新冠疫苗和药物的研发和使用现状,以及不完全免疫保护形势下病毒可能的变异动向;提出了疫情防控、病毒流行监测和疫苗药物研发的相应建议。

本文引用格式

杨婧 , 荣文婉 , 桓瑜 , 龚玉环 , 毕玉海 . 2021年新冠病毒变异、跨种传播及疫苗和药物研究热点回眸[J]. 科技导报, 2022 , 40(1) : 132 -149 . DOI: 10.3981/j.issn.1000-7857.2022.01.008

Abstract

In this review we address the classification, spatiotemporal distribution, and prevalence characteristics of SARS-CoV-2 variants, followed by a description of key mutations and their biological functions in virus variants. We also summarize the novel understandings on genetic origins and interspecies transmission risk of SARS-CoV-2 between humans and animals in 2021. Next, we describe the development and effectiveness of current vaccines and antiviral drugs in 2021, and the potential virus evolution under the pressure of insufficient immune protection provided by current vaccines. In the end, we put forward targeted suggestions on pandemic control, virus surveillance, and the development of highly effective vaccines and drugs.

参考文献

[1] Zhu N, Zhang D Y, Wang W L, et al.A novel coronavirus from patients with pneumonia in China, 2019[J].The New England Journal of Medicine, 2020, 382(8):727-733.
[2] Yang J, Li J, Lai S J, et al.Uncovering two phases of early intercontinental COVID-19 transmission dynamics[J].Journal of Travel Medicine, 2020, 27(8):taaa200.
[3] World Health Organization.WHO coronavirus disease (COVID-19) dashboard[EB/OL].[2021-12-22].https://covid19.who.int/.
[4] Tian H Y, Liu Y H, Li Y D, et al.An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J].Science, 2020, 368(6491):638-642.
[5] 国家卫生健康委员会.全力做好新型冠状病毒肺炎疫情防控工作[EB/OL].[2021-12-22].http://www.nhc.gov.cn/xcs/yqfkdt/gzbd_index.shtml.
[6] Lemey P, Ruktanonchai N, Hong S L, et al.Untangling introductions and persistence in COVID-19 resurgence in Europe[J].Nature, 2021, 595(7869):713-717.
[7] Ruktanonchai N W, Floyd J R, Lai S, et al.Assessing the impact of coordinated COVID-19 exit strategies across Europe[J].Science, 2020, 369(6510):1465-1470.
[8] Yang J, Niu P H, Chen L J, et al.Genetic tracing of HCoV-19 for the re-emerging outbreak of COVID-19 in Beijing, China[J].Protein & Cell, 2021, 12(1):4-6.
[9] Hannah R, Edouard M, Lucas Rodés-Guirao, et al.Coronavirus pandemic (COVID-19)[EB/OL].[2021-12-29].https://ourworldindata.org/coronavirus.
[10] Rossman H, Shilo S, Meir T, et al.Patterns of COVID-19 pandemic dynamics following deployment of a broad national immunization program[J].medRxiv, 2021, doi:10.1101/2021.02.08.21251325.
[11] Cohn B A, Cirillo P M, Murphy C C, et al.SARS-CoV-2 vaccine protection and deaths among US veterans during 2021[J].Science, 2021, doi:10.1126/science.abm0620.
[12] Goldberg Y, Mandel M, Bar-On Y M, et al.Waning immunity after the BNT162b2 vaccine in Israel[J].The New England Journal of Medicine, 2021, 385(24):e85.
[13] Bergwerk M, Gonen T, Lustig Y, et al.Covid-19 breakthrough infections in vaccinated health care workers[J].New England Journal of Medicine, 2021, 385(16):1474-1484.
[14] Barda N, Dagan N, Cohen C, et al.Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel:an observational study[J].Lancet, 2021, 398(10316):2093-2100.
[15] Mallapaty S.Closest known relatives of virus behind COVID-19 found in Laos[J].Nature, 2021, 597(7878):603.
[16] Chandler J C, Bevins S N, Ellis J W, et al.SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus)[J].Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(47):e2114828118.
[17] Zhou P, Yang X L, Wang X G, et al.A pneumonia outbreak associated with a new coronavirus of probable bat origin[J].Nature, 2020, 579(7798):270-273.
[18] World Health Organization.Tracking SARS-CoV-2 variants[EB/OL].[2021-12-22].https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
[19] Outbreak.info[EB/OL].[2021-11-17].https://outbreak.info/.
[20] GISAID[EB/OL].(2021-11-17)[2021-11-17].https://www.gisaid.org/.
[21] SARS-CoV-2(hCoV-19) mutation reports:Lineage|Mutation Tracker[EB/OL].[2021-12-23].https://outbreak.info/situation-reports/.
[22] Li B S, Deng A P, Li K B, et al.Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant[J].medRxiv, 2021, doi:10.1101/2021.07.07.21260122.
[23] World Health Organization.Enhancing readiness for Omicron (B.1.1.529):Technical brief and priority actions for member states[EB/OL].[2021-12-23].https://www.who.int/publications/m/item/enhancing-readinessfor-omicron-(b.1.1.529) -technical-brief-and-priorityactions-for-member-states.
[24] Wang Y P, Chen R C, Hu F Y, et al.Transmission, viral kinetics and clinical characteristics of the emergent SARS-CoV-2 Delta VOC in Guangzhou, China[J].EClinicalMedicine, 2021, 40:101129.
[25] Khan A, Wei D Q, Kousar K, et al.Preliminary structural data revealed that the SARS-CoV-2 B.1.617 variant's RBD binds to ACE2 receptor stronger than the wild type to enhance the infectivity[J].Chembiochem, 2021, 22(16):1-10.
[26] Korber B, Fischer W M, Gnanakaran S, et al.Tracking changes in SARS-CoV-2 spike:Evidence that D614G increases infectivity of the COVID-19 virus[J].Cell, 2020, 182(4):812-827.e19.
[27] Koyama T, Weeraratne D, Snowdon J L, et al.Emergence of drift variants that may affect COVID-19 vaccine development and antibody treatment[J].Pathogens, 2020, 9(5):324.
[28] Covariants.Overview of variants/mutations[EB/OL].[2021-12-23].https://covariants.org/variants.
[29] Nelson G, Buzko O, Spilman P, et al.Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant[J].bioRxiv, 2021, doi:10.1101/2021.01.13.426558.
[30] Wang Z, Schmidt F, Weisblum Y, et al.mRNA vaccineelicited antibodies to SARS-CoV-2 and circulating variants[J].Nature, 2021, 592(7855):616-622.
[31] Harvey W T, Carabelli A M, Jackson B, et al.SARSCoV-2 variants, spike mutations and immune escape[J].Nature Reviews Microbiology, 2021, 19(7):409-424.
[32] Niesen M J M, Silvert P A E, Suratekar R, et al.COVID-19 vaccines dampen genomic diversity of SARSCoV-2:Unvaccinated patients exhibit more antigenic mutational variance[J].medRxiv, 2021, doi:10.1101/2021.07.01.2125983.
[33] Tong Y G, Liu W L, Liu P P, et al.The origins of viruses:Discovery takes time, international resources, and cooperation[J].The Lancet, 2021, 398(10309):1401-1402.
[34] Liu K F, Pan X Q, Li L J, et al.Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species[J].Cell, 2021, 184(13):3438-3451.
[35] Zhou H, Chen X, Hu T, et al.A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein[J].Current biology, 2020, 30(11):2196-2203.e3.
[36] Delaune D, Hul V, Karlsson E A, et al.A novel SARSCoV-2 related coronavirus in bats from Cambodia[J].Nature communications, 2021, 12(1):6563.
[37] Mallapaty S.Coronaviruses closely related to the pandemic virus discovered in Japan and Cambodia[J].Nature, 2020, 588(7836):15-16.
[38] Wacharapluesadee S, Tan C W, Maneeorn P, et al.Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia[J].Nature communications, 2021, 12(1):972.
[39] Zhou H, Ji J K, Chen X, et al.Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses[J].Cell, 2021, 184(17):4380-4391.e14.
[40] Temmam S, Vongphayloth K, Salazar E B, et al.Coronaviruses with a SARS-CoV-2-like receptorbinding domain allowing ACE2-mediated entry into human cells isolated from bats of Indochinese peninsula[J/OL].Research Square, 2021, doi:10.21203/rs.3.rs-871965/v1.
[41] OIE.OIE Members have been keeping the OIE updated on any investigations or outcomes of investigations in animals[EB/OL].[2021-12-24].https://www.oie.int/en/what-we-offer/emergency-and-resilience/covid-19/#uiid-3/.
[42] OIE.World Animal Health Information System[EB/OL].[2021-12-24].https://wahis.oie.int/#/home.
[43] CDC.Animals and COVID-19[EB/OL].(2021-11-18)[2021-12-24].https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/animals.html.
[44] Abdel-Moneim A S, Abdelwhab E M.Evidence for SARS-CoV-2 infection of animal hosts[J].Pathogens, 2020, 9(7):529.
[45] Bivins A, Greaves J, Fischer R, et al.Persistence of SARS-CoV-2 in Water and Wastewater[J].Environmental Science & Technology Letters, 2020, 7(12):937-942.
[46] Ai Y, Davis A, Jones D, et al.Wastewater-based epidemiology for tracking COVID-19 trend and variants of concern in Ohio, United States[J].Science of the Total Environment, 2021, 801:149757.
[47] Hale, V L, Dennis, P M, McBride D S, et al.SARSCoV-2 infection in free-ranging white-tailed deer (Odocoileus virginianus)[J].bioRxiv, 2021, doi:10.1101/2021.11.04.467308.
[48] Wang Q H, Zhang Y F, Wu L L, et al.Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J].Cell, 2020, 181(4):894-904.
[49] Wu L L, Chen Q, Liu K F, et al.Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2[J].Cell discovery, 2020, 6(1):68.
[50] Shi J Z, Wen Z Y, Zhong G X, et al.Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2[J].Science, 2020, 368(6494):1016-1020.
[51] Bosco-Lauth A M, Hartwig A E, Porter S M, et al.Experimental infection of domestic dogs and cats with SARS-CoV-2:Pathogenesis, transmission, and response to reexposure in cats[J].Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(42):26382-26388.
[52] Kim Y I, Kim S G, Kim S M, et al.Infection and rapid transmission of SARS-CoV-2 in ferrets[J].Cell Host & Microbe, 2020, 27(5):704-709.
[53] Gaudreault N N, Trujillo J D, Carossino M, et al.SARSCoV-2 infection, disease and transmission in domestic cats[J].Emerging Microbes and Infections, 2020, 9(1):2322-2332.
[54] Csiszar A, Jakab F, Valencak T G, et al.Companion animals likely do not spread COVID-19 but may get infected themselves[J].GeroScience, 2020, 42(5):1229-1236.
[55] Schlottau K, Rissmann M, Graaf A, et al.SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens:An experimental transmission study[J].The Lancet Microbe, 2020, 1(5):218-225.
[56] Du X G, Guo Z H, Fan W H, et al.Establishment of a humanized swine model for COVID-19[J].Cell Discovery, 2021, 7(1):70.
[57] Wang T, Zhang N, Fan S, et al.Establishment of human distal lung organoids for SARS-CoV-2 infection.Cell Discovery, 2021, 7(1):108.
[58] Hoffmann M, Zhang L, Krüger N, et al.SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization[J].Cell Reports, 2021, 35(3):109017.
[59] World Health Organization.COVID-19-enmark[EB/OL].(2020-12-03)[2021-12-24].https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON301.
[60] Wang L, Didelot X, Bi Y H, et al.Assessing the extent of community spread caused by mink-derived SARSCoV-2 variants[J].Innovation, 2021, 28, 2(3):100128.
[61] European Food Safety Authority, European Centre for Disease Prevention and Control, Boklund A, et al.Monitoring of SARS-CoV-2 infection in mustelids[J].European Food Safety Authority Journal, 2021, 19(3):e06459.
[62] World Health Organization.COVID-19 vaccine tracker and landscape[EB/OL].[2021-11-24].https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
[63] Sinopharm Inc.The first anniversary of the world's first new crown inactivated vaccine[EB/OL].(2021-12-10)[2021-12-24].http://www.sinopharm.com/s/1223-4126-39942.html/.
[64] Sinovac Inc.COVID-19 Inactivated Vaccine(Vero Cell)-CoronaVac[EB/OL].(2021-12-23)[2021-12-24].http://www.sinovac.com.cn/product/showproduct.php?id=66.
[65] World Health Organization.Vaccine equity[EB/OL].[2021-12-29].https://www.who.int/campaigns/vaccine-equity.
[66] Haas E J, Angulo F J, McLaughlin J M, et al.Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel:an observational study using national surveillance data[J].Lancet, 2021, 397(10287):1819-1829.
[67] Borchering R K, Viboud C, Howerton E, et al.Modeling of future COVID-19 cases, hospitalizations, and deaths, by vaccination rates and nonpharmaceutical intervention scenarios-United States, April-September 2021[J].Morbidity and Mortality Weekly Report, 2021, 70(19):719-724.
[68] Brown C M, Vostok J, Johnson H, et al.Outbreak of SARS-CoV-2 infections, including COVID-19 vaccine breakthrough infections, associated with large public gatherings barnstable county, massachusetts, July 2021[J].Morbidity and Mortality Weekly Report, 2021, 70(31):1059-1062.
[69] Levine-Tiefenbrun M, Yelin I, Alapi H, et al.Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2[J].Nature Medicine, 2021, 27:2108-2110.
[70] Singanayagam A, Hakki S, Dunning J, et al.Community transmission and viral load kinetics of the SARS-CoV-2 Delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK:A prospective, longitudinal, cohort study[J].Lancet Infectious Diseases, 2021, doi:10.1016/S1473-3099(21)00648-4.
[71] Bast E, Tang F, Dahn J, et al.Increased risk of hospitalisation and death with the delta variant in the USA[J].Lancet Infectious Diseases, 2021, 21(12):1629-1630.
[72] Lopez Bernal J, Andrews N, Gower C, et al.Effectiveness of Covid-19 vaccines against the B.1.617.2(Delta) variant[J].The New England Journal of Medicine, 2021, 385:585-594.
[73] Tang P, Hasan M R, Chemaitelly H, et al.BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar[J].Nature Medicine, 2021, doi:10.1038/s41591-021-01583-4.
[74] Wang K, Cao Y L, Zhou Y J, et al.2021.A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARSCoV-2[J].medRxiv, 2021, doi:10.1101/2021.09.02.212-61735.
[75] Bar-On Y M, Goldberg Y, Mandel M, et al.Protection of BNT162b2 vaccine booster against Covid-19 in Israel[J].The New England Journal of Medicine, 2021, 385(15):1393-1400.
[76] Mayo Clinic Staff.Comparing the differences between COVID-19 vaccines[EB/OL].(2021-12-18)[2021-12-24].https://www.mayoclinic.org/coronavirus-covid-19/vaccine/comparing-vaccines.
[77] Groß R, Zanoni M, Seidel A, et al.Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T cell reactivity[J].medRxiv, 2021, doi:10.1101/2021.05.30.21257971.
[78] Normark J, Vikström L, Gwon Y D, et al.Heterologous ChAdOx1 nCoV-19 and mRNA-1273 vaccination[J].The New England Journal of Medicine, 2021, 385(11):1049-1051.
[79] Li J X, Hou L H, Guo X L, et al.Heterologous primeboost immunization with CoronaVac and Convidecia[J].medRxiv, 2021, doi:10.1101/2021.09.03.21263062.
[80] Zhang J L, He Q, An C Q, et al.Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine[J].Emerging Microbes and Infections, 2021, 10(1):1598-1608.
[81] Tian X L, Li C, Huang A L, et al.Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody[J].Emerging Microbes and Infections, 2020, 9(1):382-385.
[82] Lan J, Ge J W, Yu J F, et al.Structure of the SARSCoV-2 spike receptor-binding domain bound to the ACE2 receptor[J].Nature, 2020, 581(7807):215-220.
[83] Wang C Y, Li W T, Drabek D, et al.A human monoclonal antibody blocking SARS-CoV-2 infection[J].Nature Communications, 2020, 11(1):2251.
[84] Dai L P, Zheng T Y, Xu K, et al.A universal design of Betacoronavirus vaccines against COVID-19, MERS, and SARS[J].Cell, 2020, 182(3):722-733.
[85] Wu S P, Huang J Y, Zhang Z, et al.Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults:Preliminary report of an open-label and randomised phase 1 clinical trial[J].Lancet Infectious Diseases, 2021, 21(12):1654-1664.
[86] UNDP Data Futures Platform.Global Dashboard for Vaccine Equity[EB/OL].(2021-12-29)[2021-12-31].https://data.undp.org/vaccine-equity.
[87] 许叶春,柳红,李剑峰,等.抗新冠肺炎药物研究进展[J].中国生物工程杂志, 2021, 41(6):111-118.
[88] Hu B, Guo H, Zhou P, et al.Characteristics of SARSCoV-2 and COVID-19[J].Nature Reviews Microbiology, 2021, 19(3):141-154.
[89] 新冠病毒肺炎疫苗与治疗药物研发进展[EB/OL].(2021-09-30)[2021-12-24].https://mp.weixin.qq.com/s/xP6w4Np59vQxHZy_cry6aw.
[90] ClinicalTrials.gov[DB/OL].[2021-12-24].https://clinicaltrials.gov/ct2/results?cond=COVID-19.
[91] Zhou Y W, Xie Y, Tang L S, et al.Therapeutic targets and interventional strategies in COVID-19:Mechanisms and clinical studies[J].Signal Transduction & Targeted Therapy, 2021, 6(1):317.
[92] Brennan Z.WHO recommends against the use of convalescent plasma for Covid-19[EB/OL].(2021-12-06)[2021-12-24].https://endpts.com/who-recommends-against-the-use-of-convalescent-plasma-for-covid-19/.
[93] 关于印发新型冠状病毒肺炎诊疗方案(试行第八版修订版)的通知[EB/OL].(2021-04-05)[2021-12-24].http://www.nhc.gov.cn/yzygj/s7653p/202104/7de0b3837c-8b4606a0594aeb0105232b.shtml.
[94] Spinner C D, Gottlieb R L, Criner G J, et al.Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19:A randomized clinical trial[J].The Journal of the American Medical Association, 2020, 324(11):1048-1057.
[95] Mahase E.Covid-19:UK becomes first country to authorise antiviral molnupiravir[J].British Medical Journal, 2021, 375:n2697.
[96] Kabinger F, Stiller C, Schnitzová J, et al.Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis[J].Nature structural & molecular biology, 2021, 28(9):740-746.
[97] Menéndez-Arias L.Decoding molnupiravir-induced mutagenesis in SARS-CoV-2[J].The Journal of Biological Chemistry, 2021, 297(1):100867.
[98] Merck Inc.Merck and Ridgeback's investigational oral antiviral molnupiravir reduced the risk of hospitalization or death by approximately 50 percent compared to placebo for patients with mild or moderate COVID-19 in positive interim analysis of phase 3 study[EB/OL].(2021-10-01)[2021-12-24].https://www.merck.com/news/merck-and-ridgebacks-investigational-oral-antiviral-Molnupiravir-reduced-the-risk-of-hospitalization-or-deathby-approximately-50-percent-compared-to-placebofor-patients-with-mild-or-moderat/.
[99] Pfizer Inc.Pfizer's Covid pill remains 89% effective in final analysis, company says[EB/OL].(2021-12-14)[2021-12-24].https://www.statnews.com/2021/12/14/pfizerscovid-pill-remains-89-effective-in-final-analysis-company-says/.
[100] 史瑞,严景华.抗新型冠状病毒单克隆中和抗体药物研发进展[J].中国生物工程杂志, 2021, 41(6):129-135.
[101] Samrat S K, Tharappel A M, Li Z, et al.Prospect of SARS-CoV-2 spike protein:Potential role in vaccine and therapeutic development[J].Virus Research, 2020, 288:198141.
[102] Gottlieb R L, Nirula A, Chen P, et al.Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19:A randomized clinical trial[J].The Journal of the American Medical Association, 2021, 325(7):632-644.
[103] Hansen J, Baum A, Pascal K E, et al.Studies in humanized mice and convalescent humans yield a SARSCoV-2 antibody cocktail[J].Science, 2020, 369(6506):1010-1014.
[104] Pinto D, Park Y J, Beltramello M, et al.Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody[J].Nature, 2020, 583(7815):290-295.
[105] Pan Y B, Du J H, Liu J, et al.Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries[J].Cell Discovery, 2021, 7(1):57.
[106] Ju B, Zhang Q, Ge J W, et al.Human neutralizing antibodies elicited by SARS-CoV-2 infection[J].Nature, 2020, 584(7819):115-119.
[107] 深入解读:抗击变异的新冠病毒,有哪些药可用[EB/OL].(2021-09-09)[2021-12-24].https://mp.weixin.qq.com/s/MzGbanGQA7fcgUWXeyD5jQ.
[108] 深度解读:新冠口服药物来了,能代替疫苗终结疫情吗[EB/OL].(2021-11-08)[2021-12-24].https://mp.weixin.qq.com/s/jVojDMnW3yEvYseuj7ZO5Q.
文章导航

/