专题:2021年科技热点回眸

2021年生命科学热点回眸

  • 蒋嘉彦 ,
  • 朱芳 ,
  • 李聪 ,
  • 王呈呈 ,
  • 胡荣贵
展开
  • 1. 中国科学院大学杭州高等研究院, 杭州 310024;
    2. 中国科学院大学分子细胞科学卓越创新研究中心, 上海 200032;
    3. 贵州大学医学院, 贵阳 550025
蒋嘉彦,硕士研究生,研究方向为蛋白质稳态与人类疾病,电子信箱:3083324602@qq.com;朱芳(共同第一作者),博士研究生,研究方向为蛋白质稳态与人类疾病,电子信箱:gs.fzhu21@gzu.edu.cn;李聪,硕士研究生(共同第一作者),研究方向为蛋白质稳态与人类疾病,电子信箱:lc13161726107@163.com

收稿日期: 2021-12-03

  修回日期: 2021-12-31

  网络出版日期: 2022-02-18

基金资助

科技部国家重点研发计划项目(2021ZD0203900,2019YFA0802103);国家自然科学基金委化学科学部项目(81525019);浙江省重点研发计划项目(2020C03G2012037);国家自然科学基金项目(31960179)

Review of research focuses on bioscience in 2021

  • JIANG Jiayan ,
  • ZHU Fang ,
  • LI Cong ,
  • WANG Chengcheng ,
  • HU Ronggui
Expand
  • 1. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
    2. Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Shanghai 200032, China;
    3. Medical School, Guizhou University, Guiyang 550025, China

Received date: 2021-12-03

  Revised date: 2021-12-31

  Online published: 2022-02-18

摘要

全球科学家在新冠病毒疫情的巨大挑战中从未停止生命科学研究的步伐,2021年生命科学及相关学科仍然取得了长足的进展。概述了2021年生命科学领域最具代表性的若干项前沿研究,对蛋白质结构预测、膜蛋白结构解析、转录起始复合物的解析、人工合成淀粉、新冠病毒中和抗体、基因编辑与疾病治疗、体外胚胎培养、迷幻药与精神疾病治疗、新型干涉单分子定位显微镜和第二代微型化双光子显微镜的研发等研究及技术领域的突破进行梳理和回顾。

本文引用格式

蒋嘉彦 , 朱芳 , 李聪 , 王呈呈 , 胡荣贵 . 2021年生命科学热点回眸[J]. 科技导报, 2022 , 40(1) : 96 -112 . DOI: 10.3981/j.issn.1000-7857.2022.01.005

Abstract

Human activities in the broad area of sci-tech research have continued despite the still rampant global COVID-19 pandemic. In the past 2021, significant progress was made in bioscience and many related disciplines. This review highlights a few breakthroughs that directly addressed both immediate and long term needs of humans in facing those contingent and constant challenges. Specifically, we briefly present to the reader the progress made in the fields of theoretical and practical structure biology, chemical biology, COVID-19 antibody development, application of gene editing techniques, drug treatment for human mental disorders and development in imaging techniques. 2021 will be remembered for those Chinese scientists who made their particular contributions to the frontier research.

参考文献

[1] Jumpe J, Evans R, Prizel A, et al.Highly accurate protein structure prediction with AlphaFold[J].Nature, 2021, 596(7873):583-589.
[2] Thomas M C, Chiang C M.The general transcription machinery and general cofactors[J].Critical Reviews in Biochemistry and Molecular Biology, 2006, 41(3):105-178.
[3] Buratowski S, Hahn S, Guarente L, et al.Five intermediate complexes in transcription initiation by RNA polymerase II[J].Cell, 1989, 56(4):549-561.
[4] van Dyke M W, Roeder R G, Sawadogo M.Physical analysis of transcription preinitiation complex assembly on a class II gene promoter[J].Science, 1988, 241(4871):1335-1338.
[5] Burley S K, Roeder R G.Biochemistry and structural biology of transcription factor IID (TFIID)[J].Annual Review of Biochemistry, 1996, 65(1):769-799.
[6] Dynlacht B D, Hoey T, Tjian R.Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation[J].Cell, 1991, 66(3):563-576.
[7] Haberle V, Stark A.Eukaryotic core promoters and the functional basis of transcription initiation[J].Nature Reviews Molecular Cell Biology, 2018, 19(10):621-637.
[8] Sandelin A, Carninci P, Lenhard B, et al.Mammalian RNA polymerase II core promoters:Insights from genomewide studies[J].Nature Reviews Genetics, 2007, 8(6):424-436.
[9] Donczew R, Hahn S.Mechanistic differences in transcription initiation at TATA-Less and TATA-containing promoters[J].Molecular and Cellular Biology, 2018, 38(1), doi:https://doi.org/10.1128/MCB.00448-17.
[10] Chen X Z, Yin X T, Li J B, et al.Structures of the human mediator and mediator-bound preinitiation complex[J].Science, 2021, 372(6546), doi:10.1126/science.abg-0635.
[11] Wang Q, Guan Z, Qi L, et al.Structural insight into the SAM-mediated assembly of the mitochondrial TOM core complex[J].Science, 2021, 373(6561):1377-1381.
[12] Shen L L, Tang K L, Wang W D, et al.Architecture of the chloroplast PSI-NDH supercomplex in Hordeum vulgare[J].Nature, 2021, doi:10.1038/s41586-021-04277-6.
[13] Cai T, Sun H B, Qiao J, et al.Cell-free chemoenzymatic starch synthesis from carbon dioxide[J].Science, 2021, 373(6562):1523-1527.
[14] Kim D, Yu S, Zheng F, et al.Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer[J].Nature Energy, 2020:1-11.
[15] Wrapp D, Wang N, Corbett K S, et al.Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J].Science, 2020, 367(6483):1260-1263.
[16] Volz E, Mishra I S, Chand M, et al.Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England[J].Nature, 2021, 593(7858):266-269.
[17] Liu Y, Liu J Y, Plante K S, et al.The N501Y spike substitution enhances SARS-CoV-2 infection and transmission[J].Nature, 2021, doi:10.1101/2021.03.08.434499.
[18] Sabino E C, Buss L F, Carvalho M P S, et al.Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence[J].Lancet, 2021, 397(10273):452-455.
[19] Vaidyanathan G.Coronavirus variants are spreading in India-what scientists know so far[J].Nature, 2021, 593(7859):321-322.
[20] Thakur V, Kanta Ratho R.OMICRON (B.1.1.529):A new SARS-CoV-2 Variant of Concern mounting worldwide fear[J].Journal of Medical Virology, 2021, 18137:846-851.
[21] Cao Y L, Su B, Guo X H, et al.Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells[J].Cell, 2020, 182(1):73-84.
[22] Ju B, Zhang Q, Ge J W, et al.Human neutralizing antibodies elicited by SARS-CoV-2 infection[J].Nature, 2020, 584(7819):115-119.
[23] Shi R, Shan C, Duan X M, et al.A human neutralizing antibody targets the receptor-binding site of SARSCoV-2[J].Nature, 2020, 584(7819):120-124.
[24] Barnes C O, Jette C A, Abernathy M E, et al.SARSCoV-2 neutralizing antibody structures inform therapeutic strategies[J].Nature, 2020, 588(7839):682-687.
[25] Copin R, Baum A, Wloga E, et al.The monoclonal antibody combination REGEN-COV protects against SARSCoV-2 mutational escape in preclinical and human studies[J].Cell, 2021, 184(15):3949-3961.
[26] Gottlieb R L, Nirula A, Chen P, et al.Effect of Bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19:A randomized clinical trial[J].Journal of the American Medical Association, 2021, 325(7):632-644.
[27] Pinto D, Park Y J, Beltramello M, et al.Cross-neutralization of SARS-CoV-2 by a human monoclonal SARSCoV antibody[J].Nature, 2020, 583(7815):290-295.
[28] Esrick E B, Lehmann L E, Biffi A, et al.Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease[J].The New England JournaL of Medicine, 2021, 384(3):205-215.
[29] Meisel R.CRISPR-cas9 gene editing for sickle cell disease and β-thalassemia[J].The New England Journal of Medicine, 2021, 384(23):e91.
[30] Gillmore J D, Gane E, Taubel J, et al.CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis[J].The New England JournaL of Medicine, 2021, 385(6):493-502.
[31] Maeder M L, Stefanidakis M, Wilson C J, et al.Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10[J].Nature Medicine 2019, 25(2):229-233.
[32] Roaanr J, Tam P P L.New insights into early human development:Lessons for stem cell derivation and differentiation[J].Cell Stem Cell, 2017, 20(1):18-28.
[33] Yu L Q, Wei Y L, Duan J L, et al.Blastocyst-like structures generated from human pluripotent stem cells[J].Nature, 2021, 591(7851):620-626.
[34] Liu X D, Tan J P, Schroder J, et al.Modelling human blastocysts by reprogramming fibroblasts into iBlastoids[J].Nature, 2021, 591(7851):627-632.
[35] Martyn I, Kanno T Y, Ruzo A, et al.Author correction:Self-organization of a human organizer by combined Wnt and Nodal signalling[J].Nature, 2018, 564(7735):E10.
[36] Simunovic M, Metzger J J, Etoc F, et al.A 3D model of a human epiblast reveals BMP4-driven symmetry breaking[J].Nature Cell Biology, 2019, 21(7):900-910.
[37] Warmflash A, Sorre B, Etoc F, et al.A method to recapitulate early embryonic spatial patterning in human embryonic stem cells[J].Nature Methods, 2014, 11(8):847-554.
[38] Shao Y, Taniguchi K, Townshend R F, et al.A pluripotent stem cell-based model for post-implantation human amniotic sac development[J].Nature Communications, 2017, 8(1):208.
[39] Zheng Y, Xue X, Shao Y, et al.Controlled modelling of human epiblast and amnion development using stem cells[J].Nature, 2019, 573(7774):421-425.
[40] Xue X F, Sun Y B, Resto-irizarry A M, et al.Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells[J].Nature Materials, 2018, 17(7):633-641.
[41] Moris N, Anlas K, Van Den Brink S C, et al.An in vitro model of early anteroposterior organization during human development[J].Nature, 2020, 582(7812):410-415.
[42] Li R H, Zhong C Q, Yu Y, et al.Generation of blastocyst-like structures from mouse embryonic and adult cell cultures[J].Cell, 2019, 179(3):687-702.
[43] Kagawa H, Javali A, Khoel H H, et al.Human blastoids model blastocyst development and implantation[J/OL].Nature, 2021, 12.[2021-12-02].https://doi.org/10.1038/s41586-021-04267-8.
[44] Aguilera-castrejon A, Oldak B, Shani T, et al.Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis[J].Nature, 2021, 593(7857):119-124.
[45] Lovell-badgeE R, Anthony E, Barker R A, et al.ISSCR guidelines for stem cell research and clinical translation:The 2021 update[J].Stem Cell Reports, 2021, 16(6):1398-1408.
[46] American Psychiatric Association.Diagnostic and statistical manual of mental disorders[M].5th ed.Arlington:American Psychiatric Pub, 2013.
[47] Huang Y Q, Wang Y, Wang H, et al.Prevalence of mental disorders in China:A cross-sectional epidemiological study[J].The Lancet Psychiatry, 2019, 6(3):211-224.
[48] Kupferschmidt K.Can ecstasy treat the agony of PTSD?[J].Science, 2014, 345(6192):22-23.
[49] Heifets B D, Malenka R C.Disruptive psychopharmacology[J].American Journal of Geriatric Psychiatry, 2019, 76(8):775-756.
[50] Slomski A.MDMA-assisted therapy highly effective for PTSD[J].Journal of the American Medical Association, 2021, 326(4):299.
[51] Halvorsen J, Naudet F, Cristea I A.Challenges with benchmarking of MDMA-assisted psychotherapy[J].Nature Medicine, 2021, 27(10):1689-1690.
[52] Steenkamp M M, Litz B T, Hoge C W, et al.Psychotherapy for military-related PTSD:A review of randomized clinical trials[J].Journal of the American Medical Association, 2015, 314(5):489-500.
[53] Gutner C A, Gallagher M W, Baker A S, et al.Time course of treatment dropout in cognitive-behavioral therapies for posttraumatic stress disorder[J].Psychological Trauma, 2016, 8(1):115-121.
[54] Hake H S, Davis J K P, Wood R R, et al.3,4-methylenedioxymethamphetamine (MDMA) impairs the extinction and reconsolidation of fear memory in rats[J].Physiology and Behavior, 2019, 199:343-350.
[55] Nardou R, Lewis E M, Rothhaas R, et al.Oxytocin-dependent reopening of a social reward learning critical period with MDMA[J].Nature, 2019, 569(7754):116-120.
[56] Mithoefer M C, Feduccia A A, Jerome L, et al.MDMAassisted psychotherapy for treatment of PTSD:Study design and rationale for phase 3 trials based on pooled analysis of six phase 2 randomized controlled trials[J].Psychopharmacology (Berl), 2019, 236(9):2735-2745.
[57] Kaelen M, Barrett F S, Roseman L, et al.LSD enhances the emotional response to music[J].Psychopharmacology (Berl), 2015, 232(19):3607-3614.
[58] CiprianiI A, Furukawa T A, Salanti G, et al.Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder:A systematic review and network meta-analysis[J].Lancet, 2018, 391(10128):1357-1366.
[59] CiprianiI A, Sabtilli C, Furukawa T A, et al.Escitalopram versus other antidepressive agents for depression[J].The Cochrane Database of Systematic Reviews, 2009(2):Cd006532.
[60] Carhart-harris R, GiribaldiI B, Watts R, et al.Trial of psilocybin versus escitalopram for depression[J].The New England Journal of Medicine, 2021, 384(15):1402-1411.
[61] Carhart-harris R L, Kaelen M, Whalley M G, et al.LSD enhances suggestibility in healthy volunteers[J].Psychopharmacology (Berl), 2015, 232(4):785-794.
[62] Sigal Y M, Zhou R, Zhuang X.Visualizing and discovering cellular structures with super-resolution microscopy[J].Science, 2018, 361(6405):880-887.
[63] Gu L S, Li Y Y, Zhang S W, et al.Molecular-scale axial localization by repetitive optical selective exposure[J].Nature Methods, 2021, 18(4):369-373.
[64] Gu L S, Li Y Y, Zhang S W, et al.Molecular resolution imaging by repetitive optical selective exposure[J].Nature Methods, 2019, 16(11):1114-1118.
[65] Ozbay B N, Futia G L, Ma M, et al.Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axialscanning[J].Scientific Reports, 2018, 8(1):8108.
[66] Zong W J, Wu R L, Chen S Y, et al.Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging[J].Nature Methods, 2021, 18(1):46-49.
[67] Zong W J, Wu R L, Li M L, et al.Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J].Nature Methods, 2017, 14(7):713-719.
文章导航

/