综述

脑机接口技术发展新趋势——基于2019—2020年研究进展

  • 陈小刚 ,
  • 杨晨 ,
  • 陈菁菁 ,
  • 高小榕
展开
  • 1. 中国医学科学院北京协和医学院生物医学工程研究所, 天津 300192;
    2. 北京邮电大学电子工程学院, 北京 100876;
    3. 清华大学医学院生物医学工程系, 北京 100084
陈小刚,副研究员,研究方向为脑机接口,电子信箱:chenxg@bme.cams.cn

收稿日期: 2020-06-08

  修回日期: 2020-06-23

  网络出版日期: 2021-11-08

基金资助

国家重点研发计划项目(2017YFB1002505);广东省重点领域研发计划项目(2018B030339001);中央高校基本科研业务费专项资金项目(3332019015,3332018191)

Hot topics review of brain-computer interface in 2019-2020

  • CHEN Xiaogang ,
  • YANG Chen ,
  • CHEN Jingjing ,
  • GAO Xiaorong
Expand
  • 1. Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China;
    2. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    3. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China

Received date: 2020-06-08

  Revised date: 2020-06-23

  Online published: 2021-11-08

摘要

脑机接口旨在通过直接从大脑信号中实时解码用户意图来为辅助设备提供丰富、强大的命令信号。近年来,脑机接口技术的理论和实际应用的研究进展迅速,技术日趋成熟,其应用领域也在不断扩大。概述了2019—2020年脑机接口领域在硬件、算法、范式、应用等方面取得的重要研究进展和发生的热点事件,展望了未来脑机接口技术的发展趋势。

本文引用格式

陈小刚 , 杨晨 , 陈菁菁 , 高小榕 . 脑机接口技术发展新趋势——基于2019—2020年研究进展[J]. 科技导报, 2021 , 39(19) : 56 -65 . DOI: 10.3981/j.issn.1000-7857.2021.19.007

Abstract

Brain-computer interface (BCI) is designed to provide rich and powerful command signals for assistive devices by decoding user's intention directly from brain signals in a real-time way. Recently, both theoretic and practical aspects of BCI technology have rapidly developed and become increasingly mature. More application scenarios of BCI technology have been demonstrated as well. This review summarizes the important achievements and events in hardware, algorithm, paradigm, and application in the BCI field in 2019-2020 and discusses its development trend.

参考文献

[1] Benabid A L, Costecalde T, Eliseyev A, et al. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient:A proof-of-concept demonstration[J]. The Lancet Neurology, 2019, 18(12):1112-1122.
[2] He Y, Eguren D, Azorín J M, et al. Brain-machine interfaces for controlling lower-limb powered robotic systems[J]. Journal of Neural Engineering, 2018, 15(2):021004.
[3] Soekadar S R, Witkowski M, Gómez C, et al. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia[J]. Science Robotics, 2016, 1:eaag3296.
[4] Biasiucci A, Leeb R, Iturrate I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke[J]. Nature Communications, 2018, 9(1):2421.
[5] Chen X, Wang Y, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44):E6058-E6067.
[6] Anumanchipalli G K, Chartier J, Chang E F. Speech synthesis from neural decoding of spoken sentences[J]. Nature, 2019, 568(7753):493-498.
[7] David A M, Leonard M K, Makin J G, et al. Real-time decoding of question-and-answer speech dialogue using human cortical activity[J]. Nature Communications, 2019, 10(1):3096.
[8] Makin J G, Moses D A, Chang E F. Machine translation of cortical activity to text with an encoder-decoder framework[J]. Nature Neuroscience, 2020, 23(4):575-582.
[9] Ganzer P D, Colachis S C, Schwemmer MA, et al. Restoring the sense of touch using a sensorimotor demultiplexing neural interface[J]. Cell, 2020, 181(4):763-773.
[10] Benabid A L, Costecalde T, Eliseyev A, et al. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient:A proof-of-concept demonstration[J]. The Lancet Neurology, 2019, 18(12):1112-1122.
[11] Edelman B J, Meng J, Suma D, et al. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control[J]. Science Robotics, 2019, 4(31):eaaw6844.
[12] Musk E. Neuralink:An integrated brain-machine interface platform with thousands of channels[J]. Journal of Medical Internet Research, 2019, 21(10):e16194.
[13] Yamakawa T, Inoue T, Niwayama M, et al. Implantable multi-modality probe for subdural simultaneous measurement of electrophysiology, hemodynamics, and temperature distribution[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(11):3204-3211.
[14] Hill R M, Boto E, Holmes N, et al. A tool for functional brain imaging with lifespan compliance[J]. Nature Communications, 2019, 10(1):4785.
[15] Mahmood M, Mzurikwao D, Kim Y S, et al. Fully portable and wireless universal brain-machine interfaces enabled by flexible scalp electronics and deep learning algorithm[J]. Nature Machine Intelligence, 2019, 1:412-422.
[16] Kappel S L, Rank M L, Toft H O, et al. Dry-contact electrode ear-EEG[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(1):150-158.
[17] Lin S, Liu J, Li W, et al. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive braincomputer interfaces[J]. Nano Letters, 2019, 19(10):6853-6861.
[18] Degenhart A D, Bishop W E, Oby E R, et al. Stabilization of a brain-computer interface via the alignment of low-dimensional spaces of neural activity[J]. Nature Biomedical Engineering, 2020, doi:10.1038/s41551-020-0542-9.
[19] Zhang Y, Nam C S, Zhou G, et al. Temporally constrained sparse group spatial patterns for motor imagery BCI[J]. IEEE Transactions on Cybernetics, 2019, 49(9):3322-3332.
[20] Daly I, Williams D, Malik A, et al. Personalised, multimodal, affective state detection for hybrid brain-computer music interfacing[J]. IEEE Transactions on Affective Computing, 2020, 11(1):111-124.
[21] Jeong J H, Kwak N S, Guan C, et al. Decoding movement-related cortical potentials based on subject-dependent and section-wise spectral filtering[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(3):687-698.
[22] Zhang W, Wu D. Manifold embedded knowledge transfer for brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(5):1117-1127.
[23] Corsi M C, Chavez M, Schwartz D, et al. Integrating EEG and MEG signals to improve motor imagery classification in brain-computer interface[J]. International Journal of Neural Systems, 2019, 29(1):1850014.
[24] Willett F R, Deo D R, Avansino D T, et al. Hand knob area of premotor cortex represents the whole body in a compositional way[J]. Cell, 2020, 181(2):396-409.
[25] Khalaf A, Sejdic E, Akcakaya M. A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound[J]. Journal of Neuroscience Methods, 2019, 313:44-53.
[26] Sereshkeh A R, Yousefi R, Wong A T, et al. Online classification of imagined speech using functional near-infrared spectroscopy signals[J]. Journal of Neural Engineering, 2019, 16(1):016005.
[27] Nagai H, Tanaka T. Action observation of own hand movement enhances event-related desynchronization[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(7):1407-1415.
[28] Faller J, Cummings J, Saproo S, et al. Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(13):6482-6490.
[29] Rashkov G, Bobe A, Fastovets D, et al. Natural image reconstruction from brain waves:A novel visual BCI system with native feedback[J]. bioRxiv, 2019:10.1101/787101.
[30] Zhao H, Wang Y, Liu Z, et al. Individual identification based on code-modulated visual-evoked potentials[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(12):3206-3216.
[31] Yao Z, Wang Y, Yang C, et al. An online brain-computer interface in mobile virtual reality environments[J]. Integrated Computer-Aided Engineering, 2019, 26(4):345-360.
[32] Chen X, Hu N, Wang Y, et al. Validation of a braincomputer interface version of the digit symbol substitution test in healthy subjects[J]. Computers in Biology and Medicine, 2020, 120:103729.
[33] Chang E F, Anumanchipalli G K. Toward a speech neuroprosthesis[J]. JAMA, 2020, 323(5):413-414.
[34] Liu B, Huang X, Wang Y, et al. BETA:A large benchmark database toward SSVEP-BCI application[J]. Frontiers in Neuroscience, 2020, 14:627.
[35] Flesher S N, Downey J E, Weiss JM, et al. Restored tactile sensation improves neuroprosthetic arm control[J]. bioRxiv, 2019:10.1101/653428.
[36] Xiao Y, Jia Y, Cheng X, et al. I can see your brain:Investigating home-use electroencephalography system security[J]. IEEE Internet of Things Journal, 2019, 6(4):6681-6691.
文章导航

/