专题:儿童青少年心理健康

儿童精神障碍的遗传机制研究进展

  • 郑浩浩 ,
  • 庞滔 ,
  • 常素华
展开
  • 北京大学第六医院, 北京大学精神卫生研究所, 国家卫生健康委员会精神卫生学重点实验室(北京大学), 国家精神心理疾病临床医学研究中心(北京大学第六医院), 中国医学科学院情感认知障碍综合诊疗关键技术创新单元, 北京 100191
郑浩浩,硕士研究生,研究方向为计算精神病学,电子信箱:haohaozheng@bjmu.edu.cn

收稿日期: 2020-10-22

  修回日期: 2020-12-27

  网络出版日期: 2021-10-09

基金资助

国家自然科学基金项目(31871259)

Review of the genetic studies of mental disorders of children

  • ZHENG Haohao ,
  • PANG Tao ,
  • CHANG Suhua
Expand
  • Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Research Units of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing 100191, China

Received date: 2020-10-22

  Revised date: 2020-12-27

  Online published: 2021-10-09

摘要

儿童精神障碍是一类在儿童和少年期发病的异常行为和精神障碍,具有较高的发病率,是遍及世界各国的重要问题之一。综述了几种常见儿童精神障碍的主要遗传学研究类型、相关的主要结果,总结了遗传位点鉴定后的功能研究方法及结果,提出了目前儿童精神障碍遗传学研究的挑战和未来的研究方向。

本文引用格式

郑浩浩 , 庞滔 , 常素华 . 儿童精神障碍的遗传机制研究进展[J]. 科技导报, 2021 , 39(18) : 41 -49 . DOI: 10.3981/j.issn.1000-7857.2021.18.006

Abstract

Children's mental disorder is a type of abnormal behavior and mental disorder in the childhood and the adolescence, with a high incidence rate, as one of the important problems all over the world. This paper reviews the genetics research progress of several common childhood mental disorders (attention deficit, hyperactivity disorder, autism, and others). Most childhood mental disorders have a high degree of heritability. Understanding the pathogenesis of childhood mental disorders from a genetic point of view, identifying the disease-related genetic loci, and further understanding the function of the genetic loci, will provide important basic data for the disease prevention, the diagnosis and the precision treatment. This paper discusses the main genetic research types and the related main results of several common childhood mental disorders, and on this basis, outlines the functional research methods and results after the identification of the genetic loci, and finally proposes some future directions for the genetic research of childhood mental disorders. The result will prouide inspiration for the future genetic research of childhood mental disorders.

参考文献

[1] Polanczyk G V, Salum G A, Sugaya L S, et al. Annual research review:A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents[J]. Journal of Child Psychology and Psychiatry, 2015, 56(3):345-365.
[2] Vasileva M, Graf R K, Reinelt T, et al. Research review:A meta-analysis of the international prevalence and comorbidity of mental disorders in children between 1 and 7 years[J]. Journal of Child Psychology and Psychiatry, 2020, doi:10.1111/jcpp.13261.
[3] Angold A, Egger H L. Preschool psychopathology:Lessons for the lifespan[J]. Journal of Child Psychology and Psychiatry, 2007, 48(10):961-966.
[4] Jokiranta E, Brown A S, Heinimaa M, et al. Parental psychiatric disorders and autism spectrum disorders[J]. Psychiatry Research, 2013, 207(3):203-211.
[5] Pettersson E, Anckarsater H, Gillberg C, et al. Different neurodevelopmental symptoms have a common genetic etiology[J]. Journal of Child Psychology and Psychiatry, 2013, 54(12):1356-1365.
[6] Biederman J, Faraone S V. Current concepts on the neurobiology of attention-deficit/hyperactivity disorder[J]. Journal of Attention Disorders, 2002, 6(Suppl 1):7-16.
[7] Mill J, Xu X, Ronald A, et al. Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes:DRD4, DAT1, DRD5, SNAP-25, and 5HT1B[J]. American Journal of Medical Genetics Part B:Neuropsychiatric Genetics, 2005, 133(1):68-73.
[8] Halperin J M, Newcorn J H, Schwartz S T, et al. Age-related changes in the association between serotonergic function and aggression in boys with ADHD[J]. Biological Psychiatry, 1997, 41(6):682-689.
[9] Spivak B, Vered Y, Yoran-Hegesh R, et al. Circulatory levels of catecholamines, serotonin and lipids in attention deficit hyperactivity disorder[J]. Acta Psychiatrica Scandinavica, 1999, 99(4):300-304.
[10] Gloor F T, Walitza S. Tic disorders and Tourette syndrome:Current concepts of etiology and treatment in children and adolescents[J]. Neuropediatrics, 2016, 47(2):084-096.
[11] Rapanelli M, Pittenger C. Histamine and histamine receptors in Tourette syndrome and other neuropsychiatric conditions[J]. Neuropharmacology, 2016, 106:85-90.
[12] Müller-Vahl K R. Treatment of Tourette syndrome with cannabinoids[J]. Behavioural Neurology, 2013, 27:119-124.
[13] Demontis D, Walters R K, Martin J N, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder[J]. Nature Genetics, 2019, 51(1):63-75.
[14] Grove J, Ripke S, Als T D, et al. Identification of common genetic risk variants for autism spectrum disorder[J]. Nature Genetics, 2019, 51(3):431-444.
[15] Neale B M, Kou Y, Liu L, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders[J]. Nature, 2012, 485(7397):242-245.
[16] An J Y, Lin K, Zhu L, et al. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder[J]. Science, 2018, 362(6420):1270.
[17] Thapar A, Cooper M. Attention deficit hyperactivity disorder[J]. Lancet, 2016, 387(10024):1240-1250.
[18] Klein R G, Mannuzza S, Olazagasti M A, et al. Clinical and functional outcome of childhood attention-deficit/hyperactivity disorder 33 years later[J]. Archives of General Psychiatry, 2012, 69(12):1295-1303.
[19] Larsson H, Chang Z, D'Onofrio B M, et al. The heritability of clinically diagnosed attention deficit hyperactivity disorder across the lifespan[J]. Psychological Medicine, 2014, 44(10):2223-2229.
[20] Cook E H, Stein M A, Krasowski M D, et al. Association of attention-deficit disorder and the dopamine transporter gene[J]. American Journal of Human Genetics, 1995, 56(4):993-998.
[21] Vandenbergh D J, Persico A M, Hawkins A L, et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR[J]. Genomics, 1992, 14(4):1104-1106.
[22] Faraone S V, Doyle A E, Mick E, et al. Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder[J]. American Journal of Human Genetics, 2001, 158(7):1052-1057.
[23] Faraone S V, Perlis R H, Doyle A E, et al. Molecular genetics of attention-deficit/hyperactivity disorder[J]. Biological Psychiatry, 2005, 57(11):1313-1323.
[24] Li D, Sham P C, Owen M J et al. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD)[J]. Human Molecular Genetics, 2006, 15(14):2276-2284.
[25] Hoenicka J, Aragüés M, Ponce G, et al. From dopaminergic genes to psychiatric disorders[J]. Neurotoxicity Research, 2007, 11(1):61-72.
[26] Stein D J, Hollander E, Liebowitz M R. Neurobiology of impulsivity and the impulse control disorders[J]. The Journal of Neuropsychiatry and Clinical Neurosciences, 1993, 5(1):9-17.
[27] Hawi Z, Dring M, Kirley A, et al. Serotonergic system and attention deficit hyperactivity disorder (ADHD):A potential susceptibility locus at the 5-HT(1B) receptor gene in 273 nuclear families from a multi-centre sample[J]. Molecular Psychiatry, 2002, 7(7):718-725.
[28] Maglott D R, Feldblyum T V, Durkin A S, et al. Radiation hybrid mapping of SNAP, PCSK2, and THBD (human chromosome 20p)[J]. Mammalian Genome, 1996, 7(5):400-401.
[29] Gizer I R, Ficks C, Waldman I D. Candidate gene studies of ADHD:Aa meta-analytic review[J]. Human Genetics, 2009, 126(1):51-90.
[30] Ciliax B J, Drash G W, Staley J K, et al. Immunocytochemical localization of the dopamine transporter in human brain[J]. Journal of Comparative Neurology, 1999, 409(1):38-56.
[31] Oldenhof J, Vickery R, Anafi M, et al. SH3 binding domains in the dopamine D4 receptor[J]. Biochemistry, 1998, 37(45):15726-15736.
[32] Noaín D, Avale M E, Wedemeyer C, et al. Identification of brain neurons expressing the dopamine D4 receptor gene using BAC transgenic mice[J]. European Journal of Neuroscience, 2006, 24(9):2429-2438.
[33] Frankle W G, Huang Y, Hwang D R, et al. Comparative evaluation of serotonin transporter radioligands 11CDASB and 11C-McN 5652 in healthy humans[J]. Journal of Nuclear Medicine, 2004, 45(4):682-694.
[34] Oquendo M A, Hastings R S, Huang Y Y, et al. Brain serotonin transporter binding in depressed patients with bipolar disorder using positron emission tomography[J]. Archives of General Psychiatry, 2007, 64(2):201-208.
[35] Murphy D L, Andrews A M, Wichems C H, et al. Brain serotonin neurotransmission:An overview and update with an emphasis on serotonin subsystem heterogeneity, multiple receptors, interactions with other neurotransmitter systems, and consequent implications for understanding the actions of serotonergic drugs[J]. Journal of Clinical Psychiatry, 1998, 59:4-12.
[36] Ichikawa M, Okamura-Oho Y, Okunishi R, et al. Expression analysis of genes responsible for serotonin signaling in the brain[J]. Neurobiology Disease, 2005, 19(3):378-385.
[37] Söllner T, Whiteheart S W, Brunner M, et al. SNAP receptors implicated in vesicle targeting and fusion[J]. Nature, 1993, 362(6418):318-324.
[38] Yang L, Chang S, Lu Q, et al. A new locus regulating MICALL2 expression was identified for association with executive inhibition in children with attention deficit hyperactivity disorder[J]. Molecular Psychiatry, 2018, 23(4):1014-1020.
[39] Zhang K, Fan Z, Wang Y, et al. Genetic analysis for cognitive flexibility in the trail-making test in attention deficit hyperactivity disorder patients from single nucleotide polymorphism, gene to pathway level[J]. The World Journal of Biological Psychiatry, 2017(1):1-10.
[40] Lesch K P, Selch S, Renner T J, et al. Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder:Association with neuropeptide Y gene dosage in an extended pedigree[J]. Molecular Psychiatry, 2011, 16(5):491-503.
[41] Zayats T, Jacobsen K K, Kleppe R, et al. Exome chip analyses in adult attention deficit hyperactivity disorder[J]. Translational Psychiatry, 2016, 6(10):e923.
[42] Demontis D, Lescai F, Borglum A, et al. Whole-exome sequencing reveals increased burden of rare functional and disruptive variants in candidate risk genes in individuals with persistent attention-deficit/hyperactivity disorder[J]. Journal of the American Academy of Child and Adolescent Psychiatry, 2016, 55(6):521-523.
[43] Corominas J, Klein M, Zayats T, et al. Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing[J]. Molecular Psychiatry, 2020, 25(9):2047-2057.
[44] Satterstrom F K, Walters R K, Singh T, et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants[J]. Nature Neuroscience, 2019, 22(12):1961-1965.
[45] Qiu S, Lu Y, Li Y, et al. Prevalence of autism spectrum disorder in Asia:A systematic review and meta-analysis[J]. Psychiatry Research, 2020, 284:112679.
[46] Niu M, Han Y, Dy A B C, et al. Autism symptoms in Fragile X syndrome[J]. Journal of Child Neurology, 2017, 32(10):903-909.
[47] Sundberg M, Sahin M. Cerebellar development and autism spectrum disorder in tuberous sclerosis complex[J]. Journal of Child Neurology, 2015, 30(14):1954-1962.
[48] Satterstrom F K, Kosmicki J A, Wang J, et al. Largescale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism[J]. Cell, 2020, 180(3):568-584.
[49] Lim E T, Uddin M, De Rubeis S, et al. Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder[J]. Nature Neuroscience, 2017, 20(9):1217-1224.
[50] Krumm N, Turner T N, Baker C, et al. Excess of rare, inherited truncating mutations in autism[J]. Nature Genetics, 2015, 47(6):582-588.
[51] Shea L, Newschaffer C J, Xie M, et al. Genetic testing and genetic counseling among Medicaid-enrolled children with autism spectrum disorder in 2001 and 2007[J]. Human Genettics, 2014, 133(1):111-116.
[52] R K C Y, Merico D, Bookman M, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder[J]. Nature Neuroscience, 2017, 20(4):602-611.
[53] Turley P, Walters R K, Maghzian O, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG[J]. Nature Genetics, 2018, 50(2):229-237.
[54] Bloch M H, Leckman J F. Clinical course of Tourette syndrome[J]. Journal of Psychosomatic Research, 2009, 67(6):497-501.
[55] Serajee F J, Mahbubul Huq A H M. Advances in Tourette syndrome:Diagnoses and treatment[J]. Pediatric Clinics, 2015, 62(3):687-701.
[56] Mataix-Cols D, Isomura K, Pérez-Vigil A, et al. Familial risks of Tourette syndrome and chronic tic disorders:A population-based cohort study[J]. JAMA Psychiatry, 2015, 72(8):787-793.
[57] Davis L K, Yu D, Keenan C L, et al. Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture[J]. Plos Genetics, 2013, 9(10):e1003864.
[58] Paschou P, Yu D, Gerber G, et al. Genetic association signal near NTN4 in Tourette syndrome[J]. Annals of Neurology, 2014, 76(2):310-315.
[59] Qi Y, Zheng Y, Li Z, et al. Genetic Studies of Tic Disorders and Tourette syndrome[J]. Methods in Molecular Biology, 2019, 2011:547-571.
[60] Watanabe K, Taskesen E, van Bochoven A, et al. Functional mapping and annotation of genetic associations with FUMA[J]. Nature Communications, 2017, 8(1):1826.
[61] Hoogman M, van Rooij D, Klein M, et al. Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder:The ENIGMA adventure[J]. Human Brain Mapping, 2020, doi:10.1002/hbm.25029.
[62] Boedhoe P S W, van Rooij D, Hoogman M, et al. Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders:Findings from the ENIGMA ADHD, ASD, and OCD working groups[J]. American Journal of Psychiatry, 2020, 177(9):834-843.
[63] Mufford M, Cheung J, Jahanshad N, et al. Concordance of genetic variation that increases risk for Tourette syndrome and that influences its underlying neurocircuitry[J]. Translational Psychiatry, 2019, 9(1):120.
[64] Gandal M J, Leppa V, Won H, et al. The road to precision psychiatry:Translating genetics into disease mechanisms[J]. Nature Neuroscience, 2016, 19(11):1397-1407.
[65] Liu Z, Li X, Zhang J T, et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2[J]. Nature, 2016, 530(7588):98-102.
[66] Tillotson R, Selfridge J, Koerner M V, et al. Radically truncated MeCP2 rescues Rett syndrome-like neurological defects[J]. Nature, 2017, 550(7676):398-401.
[67] Doherty J L, Owen M J. Genomic insights into the overlap between psychiatric disorders:Implications for research and clinical practice[J]. Genome Medicine, 2014, 6(4):29.
[68] Gonzalez-Mantilla A J, Moreno-De-Luca A, Ledbetter D H, et al. A cross-disorder method to identify novel candidate genes for developmental brain disorders[J]. JAMA Psychiatry, 2016, 73(3):275-283.
[69] Martin J, Cooper M, Hamshere M L, et al. Biological overlap of attention-deficit/hyperactivity disorder and autism spectrum disorder:Evidence from copy number variants[J]. Journal of the American Academy of Child and Adolescent, 2014, 53(7):761-770.
[70] Glessner J T, Li J, Wang D, et al. Copy number variation meta-analysis reveals a novel duplication at 9p24 associated with multiple neurodevelopmental disorders[J]. Genome Medicine, 2017, 9(1):106.
[71] Writing Committee for the Attention-Deficit/Hyperactivity D, Autism S D, Bipolar D, et al. Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders[J]. JAMA Psychiatry, 2021, 78(1):47-63.
[72] Insel T, Cuthbert B, Garvey M, et al. Research domain criteria (RDoC):Toward a new classification framework for research on mental disorders[J]. American Journal ofPsychiatry, 2010, 167(7):748-751.
[73] Rommelse N N, Geurts H M, Franke B, et al. A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes[J]. Neuroscience and Biobehavioral Reviews, 2011, 35(6):1363-1396.
[74] Yang L, Neale B M, Liu L, et al. Polygenic transmission and complex neuro developmental network for attention deficit hyperactivity disorder:Genome-wide association study of both common and rare variants[J]. American Journal Medical Genetics Biological Neuropsychiatry Genetics, 2013, 162(5):419-430.
[75] Sun X, Wu Z, Cao Q, et al. Genetic variant for behavioral regulation factor of executive function and its possible brain mechanism in attention deficit hyperactivity disorder[J]. Scientific Reports, 2018, 8(1):7620.
[76] Wang T, Guo H, Xiong B, et al. De novo genic mutations among a Chinese autism spectrum disorder cohort[J]. Nature Communication, 2016, 7:13316.
[77] Guo H, Li Y, Shen L, et al. Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission[J]. Science Advances, 2019, 5(9):eaax2166.
[78] Wen Z, Cheng T L, Li G Z, et al. Identification of autism-related MECP2 mutations by whole-exome sequencing and functional validation[J]. Molecular Autism, 2017, 8:43.
[79] Du X, Gao X, Liu X, et al. Genetic diagnostic evaluation of trio-based whole exome sequencing among children with diagnosed or suspected autism spectrum disorder[J]. Frontiers in Genetics, 2018, 9:594.
[80] Lam M, Chen C Y, Li Z, et al. Comparative genetic architectures of schizophrenia in East Asian and European populations[J]. Nature Genetics, 2019, 51(12):1670-1678.
[81] Benger M, Kinali M, Mazarakis N D. Autism spectrum disorder:Prospects for treatment using gene therapy[J]. Molecular Autism, 2018, 9:39.
[82] Sinnett S E, Gray S J. Recent endeavors in MECP2 gene transfer for gene therapy of Rett syndrome[J]. Discovery Medicine, 2017, 24(132):153-159.
[83] Aspromonte M C, Bellini M, Gasparini A, et al. Characterization of intellectual disability and autism comorbidity through gene panel sequencing[J]. Human Mutation, 2019, 40(9):1346-1363.
文章导航

/