综述

工业机器人绝对定位误差补偿技术研究进展

  • 付鹏强 ,
  • 姜晓灿 ,
  • 苗宇航 ,
  • 王义文 ,
  • 王昭
展开
  • 哈尔滨理工大学先进制造智能化技术教育部重点实验室, 哈尔滨 150080
付鹏强,副教授,研究方向为机器人加工、机器视觉、精密检测技术,电子信箱:pqfu@hrbust.edu.cn;姜晓灿(共同第一作者),硕士研究生,研究方向为机器人加工,电子信箱:2961386272@qq.com

收稿日期: 2021-01-22

  修回日期: 2021-04-09

  网络出版日期: 2021-08-11

基金资助

国家自然科学基金项目(51475127);黑龙江省青年科学基金项目(QC2018064);黑龙江省普通高等学校青年创新人才培养计划项目(UNPYSCT-2018196)

Summary of absolute positioning error compensation technology for industrial robots

  • FU Pengqiang ,
  • JIANG Xiaocan ,
  • MIAO Yuhang ,
  • WANG Yiwen ,
  • WANG Zhao
Expand
  • Key Laboratory of Advanced Manufacturing and Intelligent Technology (Harbin University of Science and Technology), Ministry of Education, Harbin 150080, China

Received date: 2021-01-22

  Revised date: 2021-04-09

  Online published: 2021-08-11

摘要

针对航空制造业中工业机器人存在实际位姿与理论位姿偏差的问题,分析了工业机器人绝对定位误差来源,解析其对飞机零部件连接性能产生的影响,在工业机器人绝对定位误差补偿原理和主要步骤分析基础上,阐述运动学建模、位姿测量、运动学参数误差辨识以及误差补偿等关键步骤对工业机器人绝对定位误差补偿的作用及重要性,对比分析了国内外学者在该步骤中涉及的主流算法和技术,归纳总结各步骤中存在的问题和可能的解决方案,探讨了工业机器人离线与在线误差补偿技术中的不足之处,指出工业机器人绝对定位误差补偿技术的发展趋势。

本文引用格式

付鹏强 , 姜晓灿 , 苗宇航 , 王义文 , 王昭 . 工业机器人绝对定位误差补偿技术研究进展[J]. 科技导报, 2021 , 39(13) : 93 -107 . DOI: 10.3981/j.issn.1000-7857.2021.13.011

Abstract

According to the problem that the actual position of an industrial robot has deviation from its theoretical position in aviation manufacturing industry, the source of absolute positioning error of industrial robot is explored and its influence on the connection performance of aircraft components is analyzed. Based on the principle of absolute positioning error compensation of industrial robot, the role and importance of kinematic modeling, pose measurement, kinematic parameter error identification and error compensation on absolute positioning error compensation of industrial robot are described. The mainstream algorithms and techniques developed by domestic and foreign scholars in this field are compared, and problems and possible solutions existing in each step are summarized. After discussions on shortcomings of industrial robot offline and online error compensation technologies, a development trend of industrial robot absolute positioning error compensation technology is presented.

参考文献

[1] Ceriani N M, Zanchettin A M, Rocco P, et al. A constraint-based strategy for task-consistent safe human-robot interaction[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan:IEEE, 2013:4630-4635.
[2] 沈建新, 田威. 基于工业机器人的飞机柔性装配技术[J]. 南京航空航天大学学报, 2014, 46(2):181-189.
[3] 张红霞. 国内外工业机器人发展现状与趋势研究[J]. 电子世界, 2013(12):5, 7.
[4] 吴锦辉, 陶友瑞. 工业机器人定位精度可靠性研究现状综述[J]. 中国机械工程, 2020, 31(18):2180-2188.
[5] Ulrich M, Lux G, Piprek T. Analysis and visualisation of the positioning accuracy and underlying effects of industrial robots[J]. Advanced Materials Research, 2014, 1018(3):15-22.
[6] Sulzer J, Kova I. Enhancement of positioning accuracy of industrial robots with a reconfigurable fine-positioning module[J]. Precision Engineering, 2010, 34(2):201-217.
[7] Lim H K, Kim D H, Kim S R, et al. A practical approach to enhance positioning accuracy for industrial robots[C]//Iccas-sice. Fukuoka, Japan:IEEE, 2009:2268-2273.
[8] Jean-Michel R, Eric R, Marc B, et al. Kinematic calibration and geometrical parameter identification for robots[J]. Robotics and Automation, IEEE Transactions on, 1991, 7(6):721-732.
[9] 黄松, 胡晓兵, 周飞, 等. 关节机器人定位精度影响因素分析[J]. 机械, 2014, 41(4):70-74.
[10] Andrei L, Stan G. The influence of reference position deviation on industrial robots positioning precision[J]. IOP Conference Series:Materials Science and Engineering, 2018, 400(5):052003.
[11] Cho Y, Kim M, Cheong J, et al. Simultaneous identification of kinematic screw and joint compliance of elastic robot manipulators using deflected circular trajectories[C]//2017 IEEE International Conference on Advanced Intelligent Mechatronics(AIM). Munich, Germany:IEEE, 2017:382-387.
[12] 吴瑞明, 周晓军, 徐志农. 超声检测机器人误差补偿技术[J]. 传感技术学报, 2005(2):198-201.
[13] Li R, Zhao Y. Thermal effect model analysis and dynamic error compensation of industrial robot[J]. Measurement, 2015, 44(8):2382-2388.
[14] Jawale H P, Thorat H T. Positional error estimation in serial link manipulator under joint clearances and backlash[J]. Journal of Mechanisms & Robotics, 2013, 5(2):021003.
[15] 孙峰. 基于双编码器设计的机器人关节定位精度分析[J]. 仪表技术, 2020, 371(3):37-39.
[16] Choi Y H, Sun D H, Kwon O S. Analysis of precision positioning of multi-axis robot system[C]//International Conference on Control. Busan, Korea (South):IEEE, 2015:2087-2090.
[17] Brethé J F. Innovative kinematics and control to improve robot spatial resolution[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. Taipei:IEEE, 2010:3495-3500.
[18] 董辉跃, 周华飞, 尹富成. 机器人自动制孔中绝对定位误差的分析与补偿[J]. 航空学报, 2015, 36(7):2475-2484.
[19] Eastin R. ‘WFD’-What is it and what's ‘LOV’ got to do with it[J]. International Journal of Fatigue, 2008, 31(6):1012-1016.
[20] 高航, 王建, 杨宇星, 等. 垂直度误差对复合材料单钉连接性能的影响[J]. 航空学报, 2017, 38(2):280-288.
[21] Thoppul S D, Finegan J, Gibson R F. Mechanics of mechanically fastened joints in polymer-matrix composite structures:A review[J]. Composites Science and Technology, 2009, 69(3-4):301-329.
[22] Yuan P J, Wang Q S, Shi Z Y, et al. A micro-adjusting attitude mechanism for autonomous drilling robot end-effector[J]. Science China Information Sciences, 2014, 57(12):1-12.
[23] 陈勋漫, 黄沿江, 张宪民. 基于轴线法与卡尔曼滤波的Baxter机器人标定[J]. 振动测试与诊断, 2017, 37(5):970-977, 1066-1067.
[24] Khalil W, Dombre E. Modeling, identification and control of robots[J]. Applied Mechanics Reviews, 2003, 56(3):B34-B50.
[25] Denavit J, Hartenberg R S. 54 kinematic parameted[J]. Journal of Applied Mechanics, 1955, 77(2):215-221.
[26] Hayati S, Mirmirani M. Improving the absolute positioning accuracy of robot manipulators[J]. Journal of Field Robotics, 2010, 2(4):397-413.
[27] Abderrahim M, Whittaker A R. Kinematic model identification of industrial manipulators[J]. Robotics & Computer Integrated Manufacturing, 2000, 16(1):1-8.
[28] 宫金良, 黄风安, 张彦斐. 基于指数积的Delta机器人运动学正解建模[J]. 北京理工大学学报, 2013, 33(6):581-585.
[29] Joubair A, Bonev I A. Kinematic calibration of a six-axis serial robot using distance and sphere constraints[J]. International Journal of Advanced Manufacturing Technology, 2015, 77(1-4):515-523.
[30] 张旭, 郑泽龙, 齐勇. 6自由度串联机器人D-H模型参数辨识及标定[J]. 机器人, 2016, 38(3):360-370.
[31] 郭发勇, 梅涛, 赵江海. D-H法建立连杆坐标系存在的问题及改进[J]. 中国机械工程, 2014, 25(20):2710-2714.
[32] Filion A, Joubair A, Tahan A S, et al. Robot calibration using a portable photogrammetry system[J]. Robotics & Computer Integrated Manufacturing, 2018, 49:77-87.
[33] Matej L. Measuring inspection of CNC milling machine accurate by means of Ballbar QC10 system[J]. Journal of Biological Chemistry, 2010, 274(36):25260-25265.
[34] Icli C, Stepanenko O, Bonev I. New method and portable measurement device for the calibration of industrial robots[J]. Sensors, 2020, 20(20):5919-5933.
[35] 杜亮, 张铁, 戴孝亮. 激光跟踪仪测量距离误差的机器人运动学参数补偿[J]. 红外与激光工程, 2015, 44(8):2351-2357.
[36] Posada J, Schneider U, Pidan S, et al. High accurate robotic drilling with external sensor and compliance model-based compensation[C]//2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden:IEEE, 2016:3901-3907.
[37] Hughes B, Forbes A, Lewis A, et al. Laser tracker error determination using a network measurement[J]. Measurement Science & Technology, 2011, 22(4):045103.
[38] Oh Y T. Robot accuracy evaluation using a ball-bar link system[J]. Robotica, 2011, 29(6):917-927.
[39] 洪振宇, 梅江平, 赵学满, 等. 基于球杆仪检测信息的并联机构运动学标定[J]. 机械工程学报, 2007(7):16-22.
[40] Kolyubin S, Paramonov L, Shiriaev A. Robot kinematics identification:KUKA LWR4+ redundant manipulator example[J]. Journal of Physics Conference Series, 2015, 659(1):012011.
[41] Haznedar B, Kalinli A. Training ANFIS structure using simulated annealing algorithm for dynamic systems identification[J]. Neurocomputing, 2018, 302(9):66-74.
[42] Sun Z, Yang Z Y. Study of nonlinear parameter identification using UKF and Maximum Likelihood method[C]//2010 IEEE International Conference on Control Applications. Yokohama, Japan:IEEE, 2010:671-676.
[43] Park I W, Lee B J, Cho S H, et al. Laser-based kinematic calibration of robot manipulator using differential kinematics[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6):1059-1067.
[44] Yier W, Alexandr K, Stéphane C, et al. Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments[J]. Robotics and Computer Integrated Manufacturing, 2015, 35:151-168.
[45] Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial & Applied Mathematics, 1963, 11(2):431-441.
[46] Lightcap C, Hamner S, Schmitz T, et al. Improved positioning accuracy of the PA10-6CE robot with geometric and flexibility calibration[J]. IEEE Transactions on Robotics, 2008, 24(2):452-456.
[47] 刘湛基, 王晗, 陈桪, 等. 机器人与激光跟踪仪的坐标系转换方法研究[J]. 中国测试, 2017, 43(11):102-107.
[48] Santolaria J, Conte J, Manuel G. Laser tracker-based kinematic parameter calibration of industrial robots by improved CPA method and active retroreflector[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):2087-2106.
[49] Nubiola A, Bonev I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics & Computer Integrated Manufacturing, 2013, 29(1):236-245.
[50] 王一, 刘常杰, 任永杰, 等. 工业坐标测量机器人定位误差补偿技术[J]. 机械工程学报, 2011, 47(15):31-36.
[51] 何晓煦, 田威, 曾远帆, 等. 面向飞机装配的机器人定位误差和残差补偿[J]. 航空学报, 2017, 38(4):292-302.
[52] Tian W, Mei D Q, Li P C, et al. Determination of optimal samples for robot calibration based on error similarity[J]. Chinese Journal of Aeronautics, 2015, 28(3):946-953.
[53] 田国良, 卜昆, 邱飞, 等. 基于BP神经网络的熔模铸件收缩率预测研究[J]. 航空制造技术, 2018, 61(9):47-51.
[54] Vosniakos G C, Angelidis A. Prediction and compensation of relative position error along industrial robot endeffector paths[J]. International Journal of Precision Engineering & Manufacturing, 2014, 15(1):63-73.
[55] Nguyen H N, Zhou J, Kang H J. A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network[J]. Neurocomputing, 2015, 151(3):996-1005.
[56] Santiago D. Real time path correction of industrial robots with direct end-effector feedback from a laser tracker[J]. Sae International Journal of Aerospace, 2014, 7(2):222-228.
[57] Russell D V, Todd S. Improved accuracy of unguided articulated robots[J]. Sae International Journal of Aerospace, 2009, 2(1):40-45.
[58] Russell D, Todd S. Applied accurate robotic drilling for aircraft fuselage[J]. Sae International Journal of Aerospace, 2010, 3(1):180-186.
[59] Wu B, Zhang Y. Reference sphere positioning measurement based on line-structured light vision sensor[J]. Advances in Mechanical Engineering, doi:10.1155/2013/587904.
[60] 邾继贵, 张楠楠, 任永杰, 等. 基于双目立体视觉的工业机器人在线温度补偿[J]. 光学精密工程, 2018, 26(9):2139-2149.
[61] Morozov M, Riise J, Summan R, et al. Assessing the accuracy of industrial robots through metrology for the enhancement of automated non-destructive testing[C]//IEEE International Conference on Multisensor Fusion & Integration for Intelligent Systems. Kongresshaus BadenBaden, Germany:IEEE, 2017:335-340.
文章导航

/