高超声速技术作为新世纪航空航天的标志性技术,已成为国内外军事、航天领域关注的重点技术。对高超声速飞行器进行了分类,对国外主要军事大国高超声速飞行器的发展路线、总体方案、性能参数等进行了梳理,围绕对高超声速飞行器发展产生重要影响的气动设计技术、高超声速推进技术、高超声速结构热防护技术、高超声速制导控制技术,剖析了技术发展特点和技术发展方向。基于国外高超声速飞行器的型号发展和投入方向,认为高超声速滑翔飞行器将成为高超声速领域优先发展领域。
Hypersonic vehicle technology, as a symbol of aerospace technology in the new century, has become a focus of attention in military and aerospace fields at home and abroad. This paper introduces the classification of hypersonic vehicles, analyzes the development route, overall plan and performance parameters of the mainstream hypersonic aircraft, and summarizes its technological characteristics. The characteristics and direction of technology development are analyzed in terms of aerodynamic design technology, hypersonic propulsion technology, hypersonic structure thermal protection technology and hypersonic guidance and control technology, which have important influences on the development of hypersonic vehicles. In addition, based on the model development and investment direction of foreign hypersonic vehicles, the development trend of hypersonic vehicle in the future is predicted, so as to provide guidance and reference for the related development research.
[1] 冯志高, 关成启, 张红文. 高超声速飞行器概论[M]. 北京:北京理工大学出版社, 2015.
[2] 李小将, 李志德, 杨健. 临近空间装备体系概念及关键问题研究[J]. 装备指挥技术学院学报, 2007, 18(4):72-77.
[3] Gamble E, Haid D, Alessandro S D. Thermal management and fuel system model for TBCC dynamic simulation[C]. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Virginia:American Institute of Aeronautics and Astronautics, 2010:6642.
[4] 鲁宇. 重复使用运载火箭技术进展与展望[J]. 导弹与航天运载技术, 2017(5):1-7.
[5] 李建林, 徐立功. 临近空间高超声速飞行器发展研究[M]. 北京:中国宇航出版社, 2012。
[6] 范月华, 高振勋, 蒋崇文. 美俄高超声速飞行器发展近况[J]. 飞航导弹, 2018(11):25-30.
[7] 宋巍, 梁轶. 2018年国外高超声速技术发展综述[J]. 飞航导弹, 2019(5):7-12.
[8] 王康, 高桂清, 杨明映. 俄罗斯先锋高超声速巡航导弹主要特点及启示[J]. 飞航导弹, 2018(9):27-30.
[9] Richardson D. Causes sought for X-51A failure[J]. Jane's Missiles & Rockets, 2012(1):14-17.
[10] 许红英, 侯丹, 陈杰. 美空军发射X-37飞行器简析[J]. 中国航天, 2010(6):21-25.
[11] Varvill R, Bond A. The SKYLON spaceplane-progress to realisation[J]. Journal of the British Interplanetary Society, 2008, 61(10):22-32.
[12] Bond A, Varvill R. SKYLON:A realistic single stage spaceplane[J]. Spaceflight, 2003, 45(158):158-161.
[13] 彭治雨, 石义雷, 龚红明. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1):325-345.
[14] 闵昌万. 高超声速飞行器横侧向气动布局准则研究[J]. 宇航总体技术, 2018, 2(3):1-10.
[15] 余平, 段毅, 尘军. 高超声速飞行的若干气动问题[J]. 航空学报, 2015, 36(1):7-23.
[16] 罗金玲, 徐敏, 刘杰. 一体化外形的高超声速飞行器升阻特性研究[J]. 宇航学报, 2007, 28(6):1478-1481.
[17] 袁春飞, 仇小杰. 超燃冲压发动机研究现状及控制系统关键技术[J]. 航空发动机, 2016(4):1-7.
[18] 王璐, 王友利. 高超声速飞行器热防护技术研究进展和趋势分析[J]. 宇航材料工艺, 2016(1):1-6.
[19] Matthew M, Eric M, Parker R, et al. Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2):470-474.
[20] Venkatapathy E, Laub B, Hartman G J, et al. Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions examples for Saturn, Titan and Stardust-type sample return[J]. Advances in Space Research, 2009, 44(1):138-150.
[21] 张合新, 宫梓丰, 蔡光斌. 复杂约束条件下高超声速飞行器再入轨迹优化[J]. 兵器装备工程学报, 2019, 40(1):1-6.
[22] 郭正雄, 张珩, 肖歆昕. 环境因素对远程近空间高超声速飞行的影响[J]. 飞行力学, 2013, 31(1):84-87.
[23] 樊晨霄, 王永海, 刘涛. 临近空间高超声速飞行器协同制导控制总体技术研究[J]. 战术导弹技术, 2018(4):52-58.
[24] 余朝军, 江驹, 肖东. 一种高超声速飞行器鲁棒自适应控制方法[J]. 宇航学报, 2017, 38(10):1088-1096.
[25] 胡冬冬, 叶蕾. 对当前美国空军高超声速领域发展态势和方向的研判[J]. 现代军事, 2017(9):10-14.
[26] Air Force. Research, development, test & evaluation, air force justification book volume[R]. Washington DC:Department of Defense Fiscal, 2020.