综述文章

煤矸石作为环境材料资源化再利用研究进展

  • 田怡然 ,
  • 张晓然 ,
  • 刘俊峰 ,
  • 宋凯鸿 ,
  • 张紫阳 ,
  • 谭朝洪 ,
  • 李海燕
展开
  • 1. 北京建筑大学环境与能源工程学院, 城市雨水系统与水环境教育部重点实验室, 北京 100044;
    2. 北京建筑大学, 北京市可持续城市排水系统构建与风险控制工程技术研究中心, 北京 100044;
    3. 北京农业职业学院水利与建筑工程系, 北京 102442;
    4. 上海市市政规划设计研究院有限公司, 上海 200031
田怡然,硕士研究生,研究方向为煤矸石在水处理设施中的应用,电子信箱:tyr19950109@163.com

收稿日期: 2019-12-19

  修回日期: 2020-08-04

  网络出版日期: 2021-01-14

基金资助

北京市属高校高水平教师队伍建设支持计划青年拔尖人才培育计划项目(CIT&TCD201804052),北京建筑大学研究生创新项目(PG2019043)

The coal gangue reused as environmental materials

  • TIAN Yiran ,
  • ZHANG Xiaoran ,
  • LIU Junfeng ,
  • SONG Kaihong ,
  • ZHANG Ziyang ,
  • TAN Chaohong ,
  • LI Haiyan
Expand
  • 1. Key Laboratory of Urban Rainwater System and Water Environment Ministry of Education, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    2. Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    3. Department of Water Resources and Construction Engineering, Beijing Agricultural Vocational College, Beijing 102442, China;
    4. Shanghai Municipal Planning & Design Institute Co., Ltd., Shanghai 200031, China

Received date: 2019-12-19

  Revised date: 2020-08-04

  Online published: 2021-01-14

摘要

煤矸石作为全球排放量最大的工业固体废弃物之一,不仅占用大量土地,还会对大气、土壤等环境造成危害。但煤矸石具有一些环境友好型性能,经预处理后可被资源化再利用为环境友好型材料。综述了目前煤矸石用作环境材料的方式及各种方式的研究进展:煤矸石对营养盐、重金属和有机物等污染物具有一定的吸附性能,预处理之后可以作为一种廉价的吸附剂;煤矸石具有一定的强度,经热活化后强度更大,因此可用作建筑再生骨料生产透水砖、透水沥青等;煤矸石中还含有大量有机质和微量元素,可以增加土壤中的腐殖酸含量,改善土壤土质,从而促进植物生长。建议:今后研究工作应倾向于对煤矸石预处理方式的改进,探索其对不同类型或多种污染物的去除效果及机理;在实际生产中应丰富破碎筛分等处理方式,形成系统的制肥工艺并得以应用;在政策上应制定更加全面的相关标准。

本文引用格式

田怡然 , 张晓然 , 刘俊峰 , 宋凯鸿 , 张紫阳 , 谭朝洪 , 李海燕 . 煤矸石作为环境材料资源化再利用研究进展[J]. 科技导报, 2020 , 38(22) : 104 -113 . DOI: 10.3981/j.issn.1000-7857.2020.22.012

Abstract

As one of the world's largest industrial solid wastes, the coal gangue not only takes up a large area of land, but also harms the environment such as the atmosphere and the soil. Related researches show that the coal gangue can be used as an environmentally friendly material after being pretreated with its environmentally friendly performance. This paper reviews the resource-recycling methods and related researches of the coal gangue reused as environmental materials, including three aspects. The coal gangue enjoys a certain adsorption performance against pollutants such as nutrients, heavy metals and organic matter. Thus, it can be used as the economical adsorbent after pretreatment. With its high strength after being calcinated, it can be used as recycled building aggregate to produce permeable bricks and permeable asphalt. The organic matter and trace elements in the coal gangue can increase the content of the humic acid in the soil and improve the soil quality, then promote plant growth. This area is a prospective research direction, to improve the pretreatment method of the coal gangue, and explore the removal effect and the mechanism for different or multiple pollutants. In the actual production, more processing methods such as the crushing and the screening of the coal gangue could be developed, the systematic fertilization process should be established and applied. More comprehensive related standards should be formulated. New ideas and research directions are suggested for the management and the friendly utilization of the coal gangue.

参考文献

[1] 李俊龙. 煤矸石山表面温度场测量方法探析[J]. 山西能源学院学报, 2018, 31(5):53-55.
[2] 陈富松, 袁闯, 李国富, 等. 煤矸石的综合利用研究进展[J]. 产业与科技论坛, 2017, 16(2):72-73.
[3] 郭晔. 煤矸石的治理综合利用分析[J]. 资源节约与环保, 2018, 12:134.
[4] Li D, Wu D S, Xu F G, et al. Literature overview of Chinese research in the field of better coal utilization[J]. Journal of Cleaner Production, 2018, 185:959-980.
[5] Li J Y, Wang J M. Comprehensive utilization and environmental risks of coal gangue:A review[J]. Journal of Cleaner Production, 2019, 239:117946.
[6] 代晓璐. 煤矸石有益元素利用及有害元素污染分析[J]. 西部探矿工程, 2019, 31(2):151-153.
[7] Zhou C C, Liu G J, Xu Z Y, et al. The retention mechanism, transformation behavior and environmental implication of trace element during co-combustion coal gangue with soybean stalk[J]. Fuel, 2017, 189:32-38.
[8] Zhang H J, Ouyang S. Release characteristics of heavy metals from coal gangue under simulation leaching conditions[J]. Energy Exploration & Exploitation, 2014, 32(2):413-422.
[9] 骈炜. 煤矸石中有机物对环境的污染分析[C]//2015年中国环境科学学会学术年会. 深圳:中国环境科学学会, 2015:5.
[10] Wu H, Wen Q B, Hu L M, et al. Feasibility study on the application of coal gangue as landfill liner material[J]. Waste Management, 2017, 63:161-171.
[11] Belkheiri D, Diouri A, Taibi M, et al. Recycling of Moroccan coal gangue in the elaboration of a Portland clinker[J]. Journal of Materials and Environmental Science, 2015, 6(6):1570-1577.
[12] 王利香, 王晓丽, 王慧娟. 改性煤矸石对水中Cr(Ⅵ)的吸附性能研究[J]. 内蒙古师范大学学报(自然科学汉文版), 2012, 41(6):634-638.
[13] Zhou L, Zhou H, Hu Y, et al. Adsorption removal of cationic dyes from aqueous solutions using ceramic adsorbents prepared from industrial waste coal gangue[J]. Journal of Environmental Management, 2019, 234:245-252.
[14] Onifade M, Genc B. Spontaneous combustion of coals and coal-shales[J]. International Journal of Mining Science and Technology, 2018, 28(6):933-940.
[15] Xiong R, Wang L, Yang X K, et al. Experimental investigation on related properties of asphalt mastic with activated coal gangue as alternative filler[J]. International Journal of Pavement Research and Technology, 2018:S1996681417302596.
[16] Peng B X, Li X R, Zhao W H, et al. Study on the release characteristics of chlorine in coal gangue under leaching conditions of different pH values[J]. Fuel, 2018, 217:427-433.
[17] Long G C, Li L H, Li W G, et al. Enhanced mechanical properties and durability of coal gangue reinforced cement-soil mixture for foundation treatments[J]. Journal of Cleaner Production, 2019, 231:468-482.
[18] Jablonska B, Kityk A V, Busch M, et al. The structural and surface properties of natural and modified coal gangue[J]. Journal of Environmental Management, 2017, 190:80-90.
[19] Ding W, Bai S, Mu H, et al. Investigation of phosphate removal from aqueous solution by both coal gangues[J]. Water Science and Technology, 2017, 76(3/4):785-792.
[20] 李惠娴, 孙晓南, 刘蓉, 等. 煤矸石热活化试验研究[J]. 砖瓦, 2018, 11:44-47.
[21] 刘保元, 李政. 活化煤矸石在废水处理技术中的试验研究[J]. 黑龙江科技信息, 2010, 26:14, 254.
[22] Zhang L Y, Zhang H Y, Guo W, et al. Sorption characteristics and mechanisms of ammonium by coal by-products:Slag, honeycomb-cinder and coal gangue[J]. International Journal of Environmental Science and Technology, 2013, 10(6):1309-1318.
[23] 禾海伶. 多种材料吸附农村生活垃圾渗滤液的效能及机理研究[D]. 哈尔滨:哈尔滨工程大学, 2016.
[24] 陈思琳, 刘方, 张登宇, 等. 木炭和活性炭对沼液中氨态氮、总磷和化学需氧量的吸附效果[J]. 贵州农业科学, 2012, 40(3):204-206.
[25] 蒋丽, 谌建宇, 李小明, 等. 粉煤灰陶粒对废水中磷酸盐的吸附试验研究[J]. 环境科学学报, 2011, 31(7):1413-1420.
[26] Jablonska B. Sorption of phenol on rock components occurring in mine drainage water sediments[J]. International Journal of Mineral Processing, 2012, 104/105:71-79.
[27] Wang H J, Wang X L, Wang L X. Adsorption performance of methylene blue on modified coal gangue[J]. Advanced Materials Research, 2013, 807/809:521-525.
[28] 陈莉荣, 王思齐, 姜庆宏, 等. 改性煤矸石复合吸附剂的制备、表征及Cr(Ⅵ)吸附去除研究[J]. 硅酸盐通报, 2016, 35(5):1450-1458.
[29] Shang Z, Zhang L, Zhao X, et al. Removal of Pb(II), Cd (II) and Hg(II) from aqueous solution by mercapto-modified coal gangue[J]. Journal of Environmental Management, 2019, 231:391-396.
[30] Li H, Zheng F, Wang J, et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chemical Engineering Journal, 2020, 390:124513.
[31] Mohammadi R, Azadmehr A, Maghsoudi A. Fabrication of the alginate-combusted coal gangue composite for simultaneous and effective adsorption of Zn(II) and Mn(II)[J]. Journal of Environmental Chemical Engineering, 2019, 244:2213-2237.
[32] Jablonska B, Siedlecka E. Removing heavy metals from wastewaters with use of shales accompanying the coal beds[J]. Journal of Environmental Management, 2015, 155:58-66.
[33] Chalermyanont T, Arrykul S, Charoenthaisong N. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals[J]. Waste Management, 2009, 29(1):117-127.
[34] Bhattacharyya K G, Gupta S S. Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II) and Ni(II) from water on montmorillonite:Influence of acid activation[J]. Journal of Colloid and Interface Science, 2007, 310(2):411-424.
[35] 张金利, 张林林, 谷鑫. 重金属Pb(Ⅱ)在膨润土上去除特性研究[J]. 岩土工程学报, 2013, 35(1):117-123.
[36] Qin L, Gao X J. Properties of coal gangue-Portland cement mixture with carbonation[J]. Fuel, 2019, 245:1-12.
[37] Guan X, Qiu J S, Song H T, et al. Stress-strain behaviour and acoustic emission characteristic of gangue concrete under axial compression in frost environment[J]. Construction and Building Materials, 2019, 220:476-488.
[38] 何保, 李振南, 董艳荣, 等. 煤矸石主要污染组分静态溶出规律研究[J]. 硅酸盐通报, 2018, 37(4):1441-1446, 1461.
[39] 李静, 温鹏飞, 何振嘉. 煤矸石的危害性及综合利用的研究进展[J]. 煤矿机械, 2017, 38(11):128-130.
[40] Xu H L, Song W J, Cao W B, et al. Utilization of coal gangue for the production of brick[J]. Journal of Material Cycles and Waste Management, 2016, 19(3):1270-1278.
[41] Zhu M G, Wang H, Liu L L, et al. Preparation and characterization of permeable bricks from gangue and tailings[J]. Construction and Building Materials, 2017, 148:484-491.
[42] 赵亚兵, 张新朋, 吴楠, 等. 环保免烧结煤矸石透水砖的制备方法及其透水性能[J]. 硅酸盐通报, 2014, 33(12):3255-3260, 3271.
[43] Zhang N, Sun H, Liu X, et al. Early-age characteristics of red mud-coal gangue cementitious material[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):927-932.
[44] Salguero F, Grande J A, Valente T, et al. Recycling of manganese gangue materials from waste-dumps in the Iberian Pyrite Belt-Application as filler for concrete production[J]. Construction and Building Materials, 2014, 54:363-368.
[45] Dong Z C, Xia J W, Fan C, et al. Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar[J]. Construction & Building Materials, 2015, 100(17):63-69.
[46] 孙春宝, 董红娟, 张金山, 等. 煤矸石资源化利用途径及进展[J]. 矿产综合利用, 2016, 6:1-7.
[47] 李侠, 裴瑶琛, 韩志平, 等. 粉煤灰与煤矸石配比对苜蓿植株生长及其修复效果的影响[J]. 河南农业科学, 2017, 46(11):69-73.
[48] Wang T, Wang Y, Wang J. Research on potential fertilization of coal gangue in the Weibei coalfield, China[J]. Acta Geologica Sinica, 2008, 82(3):717-721.
[49] 王生全, 谢宵斐, 侯晨涛, 等. 煤矸石制作硅肥技术试验研究[J]. 煤田地质与勘探, 2009, 37(6):43-46.
[50] 崔树军, 李钢, 廉有轩, 等. 一种新型矿物肥料的试验研究[J]. 矿产保护与利用, 2010, 4:22-25.
[51] 王琼, 张强, 王斌, 等. 高硫煤矸石对苏打盐化土的改良效果研究[J]. 中国农学通报, 2017, 33(36):119-123.
[52] 王丽华, 关禹, 王道涵, 等. 煤矸石与不同基质比例对小白菜生长的影响[J]. 地球环境学报, 2014, 5(4):266-270.
[53] 张汝翀, 王冬梅, 张英, 等. 煤矸石绿化基质对白三叶草生长及其抵御重金属污染的影响[J]. 应用与环境生物学报, 2018, 24(4):908-914.
[54] 邵玉飞, 马建, 陈欣. 利用煤矸石制作水稻育苗基质的研究[J]. 农业资源与环境学报, 2017, 34(6):555-561.
文章导航

/