专题:科技冬奥与运动医学新进展

前交叉韧带重建术后步行过程中的生物力学特征

  • 时会娟 ,
  • 丁立 ,
  • 任爽 ,
  • 梁子轩 ,
  • 胡晓青 ,
  • 黄红拾 ,
  • 敖英芳
展开
  • 1. 北京航空航天大学生物与医学工程学院, 生物医学工程高精尖中心, 北京 100083;
    2. 北京大学第三医院运动医学研究所, 运动医学关节伤病北京市重点实验室, 北京 100091
时会娟,博士研究生,研究方向为膝关节前交叉韧带损伤预防及康复,电子信箱:shihuijuan1103@163.com

收稿日期: 2020-01-17

  修回日期: 2020-03-02

  网络出版日期: 2020-05-11

基金资助

国家自然科学基金项目(81672212)

Biomechanics dwring walking for patients after anterior cruciate ligament reconstruction

  • SHI Huijuan ,
  • DING Li ,
  • REN Shuang ,
  • LIANG Zixuan ,
  • HU Xiaoqing ,
  • HUANG Hongshi ,
  • AO Yingfang
Expand
  • 1. School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China;
    2. Institute of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing 100091, China

Received date: 2020-01-17

  Revised date: 2020-03-02

  Online published: 2020-05-11

摘要

为明确前交叉韧带(anterior cruciate ligament,ACL)重建术后动作模式的改变情况,应用三维运动捕捉系统和表面肌电系统同步采集ACL重建术后患者在步行过程中的运动学、动力学和肌电数据。结果发现,与健侧相比,术侧膝关节屈曲角度峰值和屈伸活动范围均显著减小,但承重反应期的外旋幅度显著增加;术侧承重反应期膝关节伸直力矩峰值、支撑相末期膝关节屈曲力矩峰值和外旋力矩峰值均小于健侧;术侧股直肌在承重反应期的激活程度、股二头肌和半腱肌在摆动前期的激活程度均大于健侧。结果表明:ACL重建术后6~12个月(7.4±1.3月)步态呈僵硬特征,大腿肌群激活程度增加。建议ACL重建术后针对肌肉功能特征及步态特征的改变进行精准康复干预,改善术后效果。

本文引用格式

时会娟 , 丁立 , 任爽 , 梁子轩 , 胡晓青 , 黄红拾 , 敖英芳 . 前交叉韧带重建术后步行过程中的生物力学特征[J]. 科技导报, 2020 , 38(6) : 25 -33 . DOI: 10.3981/j.issn.1000-7857.2020.06.003

Abstract

The movement pattern and the corresponding biomechanical mechanisms of patients after the anterior cruciate ligament (ACL) reconstruction are essential factors for improving the postoperative effects and preventing secondary injuries. The three-dimensional kinematic, kinetic data, and the surface electromyography activity data are collected bilaterally (for surgical, intact limbs) during patients' level walking 6 to 12 months after the ACL reconstruction (7.4±1.3 months). The three-dimensional angles and moments of the knee joint are calculated. The activation levels of the bilateral rectus femoris, the vastus medialis, the vastus lateralis, the biceps femoris, and the semitendinosus are also evaluated. It is shown that for the surgical limb, the peak knee flexion angle and the knee flexion-extension range of motion are significantly smaller, during the loading response, while the peak external rotation angle is significantly larger, compared with the intact limb. The surgical limb has smaller peak knee extension moment during the loading response phase, smaller peak knee flexion moment, and external rotation moment during the terminal stance phase compared with the intact limb. The peak activation level of the rectus femoris during the loading response phase, and the peak activation levels of the biceps femoris and the semitendinosus during the pre-swing phase are significantly higher in the surgical limb as compared with the intact limb. Patients have a stiffer gait pattern with a significant smaller peak knee flexion angle during the early stance and swing phases in the surgical limb 6 to 12 months after the ACL reconstruction. Patients also have a higher activation level of the quadriceps and the hamstring in the surgical limb compared with the intact limb. The surgical limb also has a greater knee external rotation during the loading response phase and a smaller external rotation moment during the terminal stance phase compared with the intact limb. The rehabilitation protocol after the ACL reconstruction should focus on the abnormal changes in the muscle function and the gait characteristics for better postoperative outcomes.

参考文献

[1] Prodromos C C, Han Y, Rogowski J, et al. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen[J]. Arthroscopy, 2007, 23(12):1320-1325.
[2] 敖英芳, 田得祥, 崔国庆, 等. 运动员前交叉韧带损伤的流行病学研究[J]. 体育科学, 2000, 20(4):47-48.
[3] Magnussen R A, Lawrence J T, West R L, et al. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft[J]. Arthroscopy, 2012, 28(4):526-531.
[4] Shelbourne K D, Sullivan A N, Bohard K, et al. Return to basketball and soccer after anterior cruciate ligament reconstruction in competitive school-aged athletes[J]. Sports Health, 2009, 1(3):236-241.
[5] Lohmander L S, Englund P M, Dahl L L, et al. The longterm consequence of anterior cruciate ligament and meniscus injuries:Osteoarthritis[J]. The American Journal of Sports Medicine, 2007, 35(10):1756-1769.
[6] Barr E L, Browning C, Lord S R, et al. Foot and leg problems are important determinants of functional status in community dwelling older people[J]. Disability and Rehabilitation, 2005, 27(16):917-923.
[7] Hart H F, Culvenor A G, Collins N J, et al. Knee kinematics and joint moments during gait following anterior cruciate ligament reconstruction:A systematic review and meta-analysis[J]. British Journal of Sports Medicine, 2016, 50(10):597-612.
[8] Bell A L, Brand R A, Pedersen D R. Prediction of hip joint centre location from external landmarks[J]. Human Movement Science, 1989, 8(1):3-16.
[9] Houck J R, Wilding G E, Gupta R, et al. Analysis of EMG patterns of control subjects and subjects with ACL deficiency during an unanticipated walking cut task[J]. Gait & Posture, 2007, 25(4):628-638.
[10] Dai B, Butler R J, Garrett W E, et al. Anterior cruciate ligament reconstruction in adolescent patients:Limb asymmetry and functional knee bracing[J]. The American Journal of Sports Medicine, 2012, 40(12):2756-2763.
[11] Leporace G, Metsavaht L, Pereira G R, et al. Knee synergism during gait remain altered one year after ACL reconstruction[J]. Acta Ortopedica Brasileira, 2016, 24(3):137-141.
[12] White K, Logerstedt D, Snyder-Mackler L. Gait asymmetries persist 1 year after anterior cruciate ligament reconstruction[J]. Orthopaedic Journal of Sports Medicine, 2013, 1(2):2325967113496967.
[13] Anderson F C, Goldberg S R, Pandy M G, et al. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait:An induced position analysis[J]. Journal of Biomechanics, 2004, 37(5):731-737.
[14] Hart J M, Pietrosimone B, Hertel J, et al. Quadriceps activation following knee injuries:A systematic review[J]. Journal of Athletic Training, 2010, 45(1):87-97.
[15] Ciccotti M G, Kerlan R K, Perry J, et al. An electromyographic analysis of the knee during functional activities:II. The anterior cruciate ligament-deficient and-reconstructed profiles[J]. The American Journal of Sports Medicine, 1994, 22(5):651-658.
[16] Bulgheroni P, Bulgheroni M, Andrini L, et al. Gait patterns after anterior cruciate ligament reconstruction[J]. Knee Surgery, Sports Traumatology, Arthroscopy, 1997, 5(1):14-21.
[17] Rudolph K S, Axe M J, Buchanan T S, et al. Dynamic stability in the anterior cruciate ligament deficient knee[J]. Knee Surgery, Sports Traumatology, Arthroscopy, 2001, 9(2):62-71.
[18] Hortobagyi T, Westerkamp L, Beam S, et al. Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis[J]. Clinical Biomechanics (Bristol, Avon), 2005, 20(1):97-104.
[19] Hubley-Kozey C L, Deluzio K J, Landry S C, et al. Neuromuscular alterations during walking in persons with moderate knee osteoarthritis[J]. Journal of Electromyography and Kinesiology, 2006, 16(4):365-378.
[20] Chaudhari A, Briant P L, Bevill S L, et al. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury[J]. Medicine and Science in Sports and Exercise, 2008, 40(2):215-222.
[21] Mündermann A, Dyrby C O, Andriacchi T P. Secondary gait changes in patients with medial compartment knee osteoarthritis:Increased load at the ankle, knee, and hip during walking[J]. Arthritis & Rheumatism, 2005, 52(9):2835-2844.
[22] Jordan S S, DeFrate L E, Nha K W, et al. The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion[J]. The American Journal of Sports Medicine, 2007, 35(4):547-554.
[23] Markolf K L, Burchfield D M, Shapiro M M, et al. Combined knee loading states that generate high anterior cruciate ligament forces[J]. Journal of Orthopaedic Research, 1995, 13(6):930-935.
[24] 刘卉, 苏玉林, 于冰. 非接触性前交叉韧带损伤特点及机制的研究进展[J]. 医用生物力学, 2008, 23(3):240-247.
[25] Paterno M V, Ford K R, Myer G D, et al. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction[J]. Clinical Journal of Sport Medicine, 2007, 17(4):258-262.
[26] Pohl M B, Hamill J, Davis I S. Biomechanical and anatomic factors associated with a history of plantar fasciitis in female runners[J]. Clinical Journal of Sport Medicine, 2009, 19(5):372-376.
[27] Milner C E, Ferber R, Pollard C D, et al. Biomechanical factors associated with tibial stress fracture in female runners[J]. Medicine and Science in Sports and Exercise, 2006, 38(2):323.
[28] Shelbourne K D, Davis T J, Klootwyk T E. The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears A prospective study[J]. The American Journal of Sports Medicine, 1998, 26(3):402-408.
[29] Webster K E, Feller J A. Alterations in joint kinematics during walking following hamstring and patellar tendon anterior cruciate ligament reconstruction surgery[J]. Clinical Biomechanics, 2011, 26(2):175-180.
[30] Scanlan S F, Chaudhari A M, Dyrby C O, et al. Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees[J]. Journal of Biomechanics, 2010, 43(9):1817-1822.
[31] Stergiou N, Ristanis S, Moraiti C, et al. Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees[J]. Sports Medicine, 2007, 37(7):601-613.
[32] Huang H, Keijsers N, Horemans H, et al. Anterior cruciate ligament rupture is associated with abnormal and asymmetrical lower limb loading during walking[J]. Journal of Science and Medicine in Sport, 2017, 20(5):432-437.
[33] 黄红拾, 敖英芳, 郭秦炜, 等. 前交叉韧带重建术影响步行时足底压力时相特征初步研究[J]. 中国运动医学杂志, 2014, 33(3):189-192.
文章导航

/