[1] Ghemawat S, Gobioff H, Leung S-T. The Google file system[C]//Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles. New York:ACM, 2003:29-43.
[2] Chang F, Dean J, Ghemawat S, et al. Bigtable:A distributed storage system for structured data[J]. ACM Transactions on Computer Systems, 2008, 26(2):1-26.
[3] Wu C, Huang Y F, Lee J. Comparisons between MongoDB and MS-SQL databases on the TWC website[J]. Journal of Software Engineering and Applications, 2015, 4:35-41.
[4] Apache Projects List[EB/OL].[2019-11-17]. https://projects.apache.org/projects.html?category.
[5] Kofler M. InnoDB Tables and Transactions[M]//The Definitive Guide to MySQL. Apress, Berkeley, CA, 2004:239-259.
[6] Sears R, Ramakrishnan R. bLSM:A general purpose log structured merge tree[C]//Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2012:217-28.
[7] O'Neil P, Cheng E, Gawlick D, et al. The log-structured merge-tree (LSM-tree)[J]. Acta Informatica, 33(4):351-385.
[8] Shetty P, Spillane R, Malpani R, et al. Building workloadindependent storage with VT-trees[C]//Usenix Conference on File & Storage Technologies. New York:ACM, 2013:13-17.
[9] Zhang Z, Yue Y, He B, et al. Pipelined compaction for the LSM-tree[C]//2014 IEEE 28th International Parallel and Distributed Processing Symposium. Piscataway N J:IEEE, 2014:777-786.
[10] Pan F, Yue Y, Xiong J. dCompaction:Delayed compaction for the LSM-tree[J]. International Journal of Parallel Programming, 2017, 45(6):1310-1325.
[11] Abadi D. The design and implementation of modern column-oriented database systems[J]. Foundations and Trends in Databases, 2012, 5(3):197-280.
[12] Melnik S, Gubarev A, Long J J, et al. Dremel:Interactive analysis of web-scale datasets[C]//Proceedings of the 36th International Conference on Very Large Data Bases. Piscataway N J:IEEE, 2010:330-339.
[13] Bian H, Yan Y, Tao W, et al. Wide table layout optimization based on column ordering and duplication[C]//Proceedings of the 2017 ACM International Conference on Management of Data. New York:ACM, 2017:299-314.
[14] Schlosser R, Kossmann J, Boissier M. Efficient scalable multi-attribute index selection using recursive strategies[C]//2019 IEEE 35th International Conference on Data Engineering. Piscataway N J:IEEE, 2019:209-220.
[15] Felber P, Kropf P, Schiller E, et al. Survey on load balancing in peer-to-peer distributed hash tables[J]. IEEE Communications Surveys & Tutorials, 2013, 16(1):473-492.
[16] Lakshman A, Malik P. Cassandra:a decentralized structured storage system[J]. ACM SIGOPS Operating Systems Review, 2010, 44(2):35-40.
[17] Black B. Cassandra Troubleshooting[Z]. Cassandra Summit 2010, 2010.
[18] Paiva J, Ruivo P, Romano P, et al. Auto placer:Scalable self-tuning data placement in distributed key-value stores[J]. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 2015, 9(4):19.
[19] Virtual nodes/balance[EB/OL].[2019-11-17]. http://wiki.apache.org/cassandra/VirtualNodes/Balance.
[20] Dabek F, Kaashoek M F, Karger D, et al. Wide-area cooperative storage with CFS[C]//ACM SIGOPS Operating Systems Review. New York:ACM, 2001, 35(5):202-215.
[21] Stoica I, Morris R, Karger D, et al. Chord:A scalable peer-to-peer lookup service for internet applications[J]. ACM SIGCOMM Computer Communication Review, 2001, 31(4):149-160.
[22] Chen Z, Yang S, Tan S, et al. Hybrid range consistent hash partitioning strategy-A new data partition strategy for NoSQL Database[C]//201312th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. Piscataway N J:IEEE, 2013:1161-1169.
[23] Kuhlenkamp J, Klems M, Röss O. Benchmarking scalability and elasticity of distributed database systems[J]. Proceedings of the VLDB Endowment, 2014, 7(12):1219-1230.
[24] Wang X, Loguinov D. Load-balancing performance of consistent hashing:asymptotic analysis of random node join[J]. IEEE/ACM Transactions on Networking, 2007, 15(4):892-905.
[25] Hsiao H C, Chung H Y, Shen H, et al. Load rebalancing for distributed file systems in clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 24(5):951-962.
[26] Parker D S, Popek G J, Rudisin G, et al. Detection of mutual inconsistency in distributed systems[J]. IEEE Transactions on Software Engineering, 1983(3):240-247.
[27] Lu H, Veeraraghavan K, Ajoux P, et al. Existential consistency:Measuring and understanding consistency at Facebook[C]//Proceedings of the 25th Symposium on Operating Systems Principles. New York:ACM, 2015:295-310.
[28] Agrawal D, El Abbadi A, Singh A K. Consistency and orderability:Semantics-based correctness criteria for databases[J]. ACM Transactions on Database Systems, 1993, 18(3):460-486.
[29] Thomas R H. A majority consensus approach to concurrency control for multiple copy databases[J]. ACM Transactions on Database Systems, 1979, 4(2):180-209.
[30] Wada H, Fekete A, Zhao L, et al. Data consistency properties and the trade-offs in commercial cloud storage:the consumers' perspective[C]. 5th The biennial Conference on Innovative Data Systems Research, Asilomar, CA, January 9-12, 2011.
[31] Bailis P, Venkataraman S, Franklin M J, et al. Probabilistically bounded staleness for practical partial quorums[J]. Proceedings of the VLDB Endowment, 2012, 5(8):776-787.
[32] Vogels W. Eventually consistent[J]. Communications of the ACM, 2009, 52(1):40-44.
[33] Bailis P, Ghodsi A, Hellerstein J M, et al. Bolt-on causal consistency[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2013:761-772.
[34] Terry D B, Demers A J, Petersen K, et al. Session guarantees for weakly consistent replicated data[C]//Proceedings of the Third International Conference on Parallel and Distributed Information Systems, 1994. Piscataway N J:IEEE, 1994:140-149.
[35] Terry D B, Demers A J, Petersen K, et al. Session guarantees for weakly consistent replicated data[C]//Proceedings of 3rd International Conference on Parallel and Distributed Information Systems. Piscataway N J:IEEE, 1994:140-149.
[36] Nayate A, Dahlin M, Iyengar A. Transparent information dissemination[C]//ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and Open Distributed Processing. Berlin:Springer, 2004:212-231.
[37] Bourne S. A conversation with Bruce Lindsay[J]. Queue, 2004, 2(8):22-33.
[38] Urgaonkar B, Ninan A G, Raunak M S, et al. Maintaining mutual consistency for cached web objects[C]//Proceedings 21st International Conference on Distributed Computing Systems. Piscataway N J:IEEE, 2001:371-380.
[39] Theel O, Raynal M. Static and dynamic adaptation of transactional consistency[C]//Proceedings of the Thirtieth Hawaii International Conference on System Sciences. Piscataway N J:IEEE, 1997, 1:533-542.
[40] Perrin M, Petrolia M, Mostefaoui A, et al. Consistent shared data types:Beyond memory[D]. Nantes:Université de Nantes, 2014.
[41] Bailis P, Ghodsi A, Hellerstein J M, et al. Bolt-on causal consistency[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2013:761-772.
[42] Brewer E A. Lessons from giant-scale services[J]. IEEE Internet Computing, 2001, 5(4):46-55.
[43] Abadi D. Consistency tradeoffs in modern distributed database system design:CAP is only part of the story[J]. Computer, 2012, 45(2):37-42.
[44] Davidson S B, Garcia-Molina H, Skeen D. Consistency in a partitioned network:A survey[J]. ACM Computing Surveys (CSUR), 1985, 17(3):341-370.
[45] Tanenbaum A S, Van Steen M. Distributed systems:principles and paradigms[M]. Upper Saddle River:PrenticeHall Inc., 2007.
[46] Bermbach D, Kuhlenkamp J. Consistency in distributed storage systems[C]//International Conference on NetworkedSystems. Berlin:Springer, 2013:175-189.
[47] HDFS architecture guide[EB/OL].[2019-10-07]. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Replication+Pipelining.
[48] Dai W, Ibrahim I, Bassiouni M. A new replica placement policy for hadoop distributed file system[C]//2016 IEEE 2nd International Conference on Big Data Security on Cloud (Big Data Security), IEEE International Conference on High Performance and Smart Computing (HPSC), IEEE International Summit (Confluence). Piscataway N J:IEEE, 2014:36-39.
[49] Ye X, Huang M, Zhu D, et al. A novel blocks placement strategy for Hadoop[C]//2012 IEEE/ACIS 11th International Conference on Computer and Information Science. Piscataway N J:IEEE, 2012:3-7.
[50] Patel N M, Patel N M, Hasan M I, et al. Improving HDFS write performance using efficient replica placement[C]//5th International Conference-Confluence The Next Generation Information Technology Conference on Intelligent Data and Security (IDS). Piscataway N J:IEEE, 2016:262-267.
[51] Higai A, Takefusa A, Nakada H, et al. A study of effective replica reconstruction schemes at node deletion for HDFS[C]//201414th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Piscataway N J:IEEE, 2014:512-521.
[52] Qu K, Meng L, Yang Y. A dynamic replica strategy based on Markov model for hadoop distributed file system (HDFS)[C]//20164th International Conference on Cloud Computing and Intelligence Systems (CCIS). Piscataway N J:IEEE, 2016:337-342.
[53] 舒继武, 罗象宏, 存储系统中的纠删码研究综述[J]. 计算机研究与发展, 2012, 49(1):1-11.
[54] Haddock W, Curry M L, Bangalore P V, et al. GPU erasure coding for campaign storage[M]//Kunkel J M, Yokota R, Taufer M, et al. High Performance Computing. Cham:Springer International Publishing, 2017:145-159.
[55] Chen H, Fu S. Parallel erasure coding:Exploring task parallelism in erasure coding for enhanced bandwidth and energy efficiency[C]//2016 IEEE International Conference on Networking, Architecture and Storage (NAS). Piscataway N J:IEEE, 2016:1-4.
[56] Lamport L. Paxos made simple[J]. ACM Sigact News, 2001, 32(4):18-25.
[57] Ongaro D, Ousterhout J. Ousterhout. In Search of an Understandable Consensus Algorithm[C]//Proceedings of the 2014 USENIX conference on USENIX Annual Technical Conference. Berkeley:USENIX, 2014:305-320.
[58] Lamport L. Fast paxos[J]. Distributed Computing, 2006, 19(2):79-103.
[59] Lamport L, Massa M. Cheap paxos[C]//International Conference on Dependable Systems and Networks, 2004. Piscataway N J:IEEE, 2004:307-314.
[60] Gafni E, Lamport L. Disk paxos[J]. Distributed Computing, 2003, 16(1):1-20.
[61] Copeland C, Zhong H. Tangaroa:A byzantine fault tolerant raft[J/OL].[2019-09-30]. http://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf.
[62] Arora V, Mittal T, Agrawal D, et al. Leader or majority:Why have one when you can have both? improving read scalability in raft-like consensus protocols[C]//9th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 17). Berkeley:USENIX, 2017:46-51.
[63] Apache Accumulo[EB/OL].[2019-11-17]. https://accumulo.apache.org.
[64] LevelDB[EB/OL].[2019-11-17]. https://github.com/google/leveldb.
[65] RocksDB[EB/OL].[2019-11-17]. https://rocksdb.org.
[66] Wang L, Ding G, Zhao Y, et al. Optimization of leveldb by separating key and value[C]//201718th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). Piscataway N J:IEEE, 2017:421-428.
[67] Mei F, Cao Q, Jiang H, et al. LSM-tree managed storage for large-scale key-value store[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 30(2):400-414.
[68] 饶毓琳. 基于LSM-Tree的持久化缓存机制的优化研究[D]. 武汉:华中科技大学, 2016.
[69] TimescaleDB[EB/OL].[2019-11-17]. https://www.timescale.com.
[70] OpenTSDB[EB/OL].[2019-11-17]. http://opentsdb.net.
[71] KairosDB[EB/OL].[2019-11-17]. http://kairosdb.github. io.
[72] InfluxDB[EB/OL].[2019-11-17]. https://www.influxdata.com/products/influxdb-overview.
[73] Apache IoTDB[EB/OL].[2019-11-17]. https://iotdb.apache.org.
[74] Rhea S, Wang E, Wong E, et al. Littletable:A time-series database and its uses[C]//Proceedings of the 2017 ACM International Conference on Management of Data. New York:ACM, 2017:125-138.
[75] 徐化岩, 初彦龙. 基于influxDB的工业时序数据库引擎设计[J]. 计算机应用与软件, 2019, 36:9.
[76] Balis B, Bubak M, Harezlak D, et al. Towards an operational database for real-time environmental monitoring and early warning systems[J]. Procedia Computer Science, 2017, 108:2250-2259.
[77] Przymus P, Kaczmarski K. Dynamic compression strategy for time series database using GPU[M]//New Trends in Databases and Information Systems. Berlin:Springer, 2014:235-244.
[78] Llusa S A, Vila-Marta S, Escobet C T. Formalism for a multiresolution time series database model[J]. Information Systems, 2016, 56:19-35.
[79] Sevcech J, Bielikova M. Symbolic time series representation for stream data processing[C]//2015 IEEE Trustcom/BigDataSE/ISPA. Piscataway N J:IEEE, 2015, 2:217-222.